
ISSN 23499842(Online), Volume 1, Special Issue 2(ICITET 15), March 2015

International Journal of Innovative Trends and Emerging Technologies

Paper ID # IC15019 90

CODE SECURITY BY CONFUSING LOGIC FLOW USING

SELF MODIFYING CODE
1
Mr.R.MANIKANDAN,

 2
Mr. P.ASHOK KUMAR,

3
Mr.R.GOVINDARAJU,

1 Research Scholar, 2 Lecturer,3 Lecturer
1 St.Peter’s University, Department of CSE, Chennai.

2,3University College of Engineering Tindivanam, Department of CSE

 Tamilnadu, India

Abstract -Reverse engineering process can regain the

software program code which can be used either for

good or bad. Various obfuscation techniques can be

used by the developer to make reverse engineering
process harder or worthless. Our algorithm which

focuses on effectiveness along with secrecy of

program can be used to obfuscate logical flow of

software programs. It uses self-modifying code

which modifies itself during execution and also it

removes control flow information from the code area

and hides them in the data area. In order to preserve

the semantics of the program obfuscated instructions

are reconstructed while executing. Intruder finds

difficult to differentiate the obfuscated program from

normal binary program which shows the stealthy of
program.

Index Terms—Computer security, software

engineering, soft- ware safety, software security.

I. INTRODUCTION

Software, over the years, has evolved from free code

given along with the hardware to a valuable asset,

automating almost all of the electronic equipment’s

and systems. The growth in the software analyzing

tools has helped the software developers to analyze

and better their software programs. Unfortunately, the

same software analyzing technologies [1], [2] are

used to reverse engineer software systems with
malicious intent such as stealing the intellectual

property of the program and for identifying the

vulnerabilities in a program and exploiting them.

Tools and documents on software reverse engineering

are readily available in various websites [1],[2]. There

have been several cases of software law suits

involving intellectual property theft employing

reverse engineering techniques. In 1992, Atari

Games v.Nintendo [3]; in 2000, Sony v.Connectix [4]

and in 2002, Blizzard v. bnetd are some law suits

involving reverse engineering of software programs.
Blizzard [5] entertainment’s online multiplayer

gaming service called Battle.net was reverse

engineered into the software package bnetd. Blizzard

won the United States lawsuit against bnetd’s

Original developers [6].

In [7], a self-modifying code based

algorithm is proposed.In this method the control flow

instructions like jmp are camouflaged with normal

instructions like mov instruction. The opcode of the

jmp instructions are changed and the target addresses

are stored in the destination field of the move

instruction. Modifying instructions to change the

opcode back to the opcode of jmp instruction are
added at the beginning of the program. A problem

with this method is that, even though the control flow

instructions are camouflaged with other instructions,

the control flow information, that is the target

address, is available in the pro- gram code sections, in

the modifying instructions. So, this may be revealed

during disassembly of the code section to an

adversary. As explained earlier, our method handles

this problem by moving the control flow information

completely from code section to data area.

Control flow flattening is control
obfuscation method

[8] to confuse the disassembler about the execution

sequence of the procedure. The idea is that, all the

basic blocks will be assigned with the same

predecessor and successor block. Once a block is

executed, the control flows to the successor block

and then to the predecessor and eventually to the

exact block from the predecessor block. One of the

advantages of control flow flattening is that it

provides very good control obfuscation. On the other

hand, the performance overhead in terms of space and

timeis high for this method. Instruction disassembly
error is also less for control flow flattening, i.e., using

an automated disassembly tool an adversary can

disassemble a majority of instructions from the

binary program.

In this paper we propose an algorithm to

perform binary level obfuscation, which has good

control flow and instruction obfuscation. In most

methods performing binary level obfuscation, they

introduce a new module to the program to support

their obfuscations. In other methods like [7], [8],

which do not use extra modules for obfuscation, the
control flow information is available in the code area

which can be seen during disassembly using tools

like IDAPro[1]. So, this motivated us to develop an

algorithm that blends the instructions to support

obfuscation along with the original program, instead

of having an extra module. Also, an algorithm that

will not expose the control flow information when

ISSN 23499842(Online), Volume 1, Special Issue 2(ICITET 15), March 2015

International Journal of Innovative Trends and Emerging Technologies

Paper ID # IC15019 91

disassembled using an auto- mated disassembly tool.

The basic idea used in our method is to

camouflage control flow instructions, like jump

instructions and storing their details, needed to

reconstruct them in the data area. The target address

information is thus in the data area and not in code
area like in [7]. During runtime these instructions get

re- constructed by the self-modifying code inserted

during the obfuscation time. One advantage of this

method is that the control flow information is stripped

from the code section and an adversary will not be

able to find the control flow information by just

analyzing the code area. It is also not trivial to find

the control flow information by analyzing the data

area as they are defined and initialized similar to the

ordinary variables.

Hence, the major contribution of our

paper compared to other algorithm is that the target
address location information is stripped from the

code area and is stored in the data area. An adversary

cannot reconstruct the control flow by analyzing just

the code area. Another contribution of our paper is

the introduction of junk bytes in the execution path.

This facilitates the obfuscation of conditional jump

instructions and adds more confusion to the

adversary. Another advantage of our method is that

extra modules are not added to the program so as to

facilitate dynamic mutation. The self-modifying

instructions are inserted within the program
procedures. Thus our method does not have the

overhead of protecting the additional modules.

The paper is organized as follows. Section

II provides preliminaries necessary for understanding

the proposed algorithm. Threat model assumption of

the attack is discussed in Section III. Section IV

covers the proposed algorithm in detail.

The implementation details are discussed in

Section V. Section VI is conclusion.

II. PRELIMINARIES

A. Self Modifying Program

Self-modifying program is one which modifies itself
while executing. This method is used in different

binary obfuscation techniques in different form. The

basic idea of this method is that, parts of the programs

are removed or replaced by other instructions, thus

statically the program looks different. During runtime

the program is transformed back to its original form.

Different methods are adopted to achieve this as

presented in [7]. The basis of all the methods is to

add extra code modules to the program which knows

exactly which area of the program is to be modified

and when to be modified.
The advantage of using self modifying

programs is that it obscures the programs really well

and makes it difficult for the static disassemblers to

correctly disassemble the program. Statically, the

program will look completely different and it gets

fixed dynamically through self modifying code. Self

modifying code can also be used for obfuscating

program areas dynamically. So a dynamically

restored code can again be obfuscated during runtime.

So, the period in which the code is in its true form is
during its execution. So, even if an adversary decides

to run the program and break at some point and

dynamically disassemble the program, his/her chance

to get the program in its true form is low.

III. THREAT MODEL

For designing a protection mechanism for

software, one should understand the threat faced

by the software from the adversary. The assumption

we make is that the adversary is trying to reverse

engineer a binary program to assembly level

representation. One of the factors to be considered in

the threat model is the platform and the access level
the adversary has. Our assumption is that the

adversary owns the software program and pro- gram

runs in the adversary’s computer. We also assume

that the adversary has complete control over the

system, where the adversary can analyze the

program, modify it and execute it.

Another assumption is that the adversary has

access to reverse engineering tools that will help in

disassembling the binary pro- gram to assembly

representation. We assume that the adversary has

access to disassembly tools like IDAPro[1] and ald.
Our protection mechanism uses self modifying code,

which mutates the program during runtime. We

assume that the adversary has access to this

information and uses dynamic analysis to

disassemble.

IV. PROPOSED METHOD

A program consists of code area and data area.

Different data areas are global, local and dynamic.

Stack is an example for local data area and heap for

dynamic. Our method is basically built on the fact

that most reverse engineering tools and methods

consider data area and code area separately. Reverse
engineers and reverse engineering tools try to extract

programming information from the code segments of

the software and extracts data values and information

about the data structures from the data segments and

symbol tables.

The basic idea of our obfuscation is to hide the code

information like jump instructions, in the data area,

stack, with other data elements thus obscuring the

program code. The process of hiding code

information in data area is done at the obfuscation

time. The information is stored in stack and hence it
looks like ordinary variables defined in the function.

It is harder for an adversary to distinguish this from

ordinary variables by just analyzing the stack.

Removing instructions from the code area or

ISSN 23499842(Online), Volume 1, Special Issue 2(ICITET 15), March 2015

International Journal of Innovative Trends and Emerging Technologies

Paper ID # IC15019 92

camouflaging it with other instructions makes the

program semantically different. The code information

stored in the data area is used to reconstruct the

original code at runtime and there by the execution of

the program is semantically equivalent. This is

achieved by inserting reconstruction instructions just
above the original location. This will result in

reconstructing the original instruction at runtime. We

further explain our algorithm in detail.

Fig.1 Proposed Architecture

A. Offline Obfuscation

This is the first phase of our obfuscation

algorithm. The bi- nary program is converted to its

equivalent assembly program using PLTO (Pentium

Link Time Optimizer). It is then analyzed to find

suitable instructions to be obfuscated. Once the

obfuscation is done, the assembly program is

assembled back to binary.
1) Selecting Instruction to be obfuscated: The first

step of the algorithm is to identify which all

instructions have to be camouflaged. The trivial

method is randomly picking instructions from the

code area. But, in our method jump instructions are

chosen to be camouflaged for the following reasons.

Jump instructions decide the control flow of

a procedure in the program. By obscuring the jump

instructions in the procedure we are thus obfuscating

the control flow of the program. Instructions which

give information about the control flow of the
program will help the adversary to easily understand

the logic of the program. Another motivation for

considering jump instructions, to be camouflaged, is

the scope it provides for inserting junk bytes in the

program. Camouflaging jump instructions obscures

control flow of the program. This will lead in

confusing the disassembly tool to assume wrong

control flow to the program and makes it possible to

add junk bytes between code blocks which are

unreachable. This will increase the errors while an

adversary tries to reverse engineer the binary

program.
2) Storing Target Address in the Stack: With the

instructions to be camouflaged known, the space

required in the stack to store the target addresses of

camouflaged instruction can also be calculated. In the

method proposed, for each instruction in a procedure

to be camouflaged, a variable space is allocated in the

stack. The counts of instructions in the function

which are going to becamouflaged are calculated and

then the stack is expanded accordingly.

The expansion of the stack is possible with a small

tweak in the assembly program. In the calling
convention of the ELF (Extended Linker Format)

programs in 86 platforms, the stack allocation for a

function is done by the function itself. All the

functions start with the following instructions:

pushebp

movebp, esp

sub esp,8

Once the function is called the base pointer of the

caller function is pushed onto the stack. Then the

current stack pointer is stored as the new base pointer

(for the called function). The first two assembly

instructions in the code segment are essentially doing
that. The third instruction is where the allocation of

the stack for the particular function happens .

Fig. 3.Storing code information in stack. The

size of the stack needed by the function in this

particular case is 8 bytes. By modifying the value in

the third instruction, the size of the stack for that

particular function can be changed. Once, the

instructions that are going to be obfuscated and their

count are known, the stack is expanded accordingly

as mentioned in the previous paragraph. Since we

know that we are moving jmp instructions, the target
address to which jump happens constitutes the code

information. This target address is what we store in

the dataarea. Selecting stack area to store the code

information has an ad- vantage over global data area.

The code information in stack area is stored in a way

similar to that of local variable definition. Self

modifying instructions use these variables to

reconstruct the control flow. The way the variables

are used in the program are similar to manipulating

ordinary variables loading the value from a variable

to a register and analyzing the value. The variables of

a function are used only by the instructions of that
function.

 On the contrary, if global data area was

used to store the code information, then the code

information will be stored in the global data area.

Each local function will use only those variables

which are used to store the control flow information

of that particular function. A global variable used

exclusively by a local function is suspicious and an

adversary may easily notice it. Fig. 3 shows how the

jmp instructions target address is stored in the stack

area. The target address xxxx of the jmp instruction in
the first block is stored in a stack variable.

3) Obfuscating the jmp Instructions:

The jmp instruction is ready to be obfuscated as the

target address of the jmp has already been stored in

ISSN 23499842(Online), Volume 1, Special Issue 2(ICITET 15), March 2015

International Journal of Innovative Trends and Emerging Technologies

Paper ID # IC15019 93

the stack. The jmp instructions are replaced with

another instruction instead of removing. The jmp

instructions are replaced by the following instruction,

moveax, 0

The replacement of jmp instruction with mov

results in the loss of control flow information. The
new instruction, mov, is an ordinary instruction and

does not have a say in the control flow of the

program. When an automated disassembler tries to

disassemble the program, it assumes the control flows

just to the next address location after mov. We

decided on the instruction mov to be used to replace

jmp instructions owing to the fact that it is the most

used instruction in a program. It is possible to use

other instructions instead of mov to camouflage the

jmp instructions. The logic remains thesame.

Randomizing the selection of instruction to be used to

replace jmp instruction will increase the challenge
posed by the method to an adversary.

B. Runtime Deobfuscation

Camouflaging the instructions in the program as

explained in the previous section changes the

semantics of the program. Running this program just

like that gives erroneous results and most probably

crashes the program. And hence, the program has to

be changed back to it soriginal form before it gets

executed. In our method we do this dynamically at

runtime with the help of self modifying code.

Reconstruction instructions which reconstruct jmp
instruction at runtime are inserted in a block that

precedes the jmp instruction. The block should be a

dominator block, which means it should precedes the

jmp instruction in all execution paths.

The insertion of reconstruction instructions

are shown in Fig. 3.The first step is to change the

opcode of mov instruction to that of jmp instruction.

The opcode of jmp instruction is 0xE9 and that of

mov instruction is 0xB8. We insert an instruction to

XOR the address location of mov instruction with

0x00000051. This changes the instruction to

jmpoffset0. Now the next step is to add the address
offset stored in the data area to the instruction. We

insert an instruction to addthe value in the local

variable to the instruction address. Now the exact jmp

instruction is created at the address location of mov

instruction.

In Fig. 3, the camouflaged jmp instruction is at

address location A1 in basic block B1. The jmp

instruction is camouflaged into mov instruction and

the reconstruction instructions are added before the

camouflaged instruction.

B. Runtime Reobfuscation

With the reconstruction instructions in place, the

program semantics are restored and program works

perfectly well. Now, the instructions which are

obfuscated are restored and is in its original form. An

adversary, who tracks the image of the pro- gram at

regular intervals, will be able to find the de-

obfuscated instructions. A core dump of the image of

the program will give the instructions in its true form

if it is done after the reconstruction operations. A

method to address this problem is by reobfuscating
the instruction at runtime after its execution. This is

achieved by adding extra reobfuscation instructions in

the succeeding blocks to reobfuscate jmp instruction

back to mov. Note that, the reobfuscation instruction

should be inserted in all the successor blocks as the

execution path is chosen dynamically at runtime.

Reobfuscation is done by XOR-ing the jmp

instruction with 0x00000051 to get the instruction:

Move ax, 0

According to the control flow of the example

in Fig. 3, the basic block B3 follows after the

execution of the jmp instruction. The reobfuscation
instructions for the program are hence added in the

beginning of the basic block B3.

Fig. 4, shows how the junk bytes are

introduced in the program. The existence of junk

bytes corrupts the original code in the program too,

since partial junk bytes of an instruction are added.

In case the jmp instruction is a part of the loop, then a

new basic block is added to the loop edge and the

reconstruction instructions are added in that blocks

shown in Fig. 4. Fig.2 Runtime Reobfuscation

Ad
dre
ss
A1

Re-
obfuscat
ion
block

instr

1
instr

2
instr

3
jmp

xxxx

Addre
ss xxxx instr

1
iinstr

2
instr

3
xoe(a1)
, 0x51
add(a1)
, var_a
move
eax,0

xor(a
1),0x
51
and
(a1),
0xff

instr

1
iinstr

2
instr

3
xoe(a
1),
0x51
add(a
1),
var_a
move
eax,0

Junk
Bytes
instr

1
instr

2
xor(a
1),0x
51
and(a
1),0xf
f
instr

1
instr

2
instr

3

Var
_a
=xx
xx

Addre
ss A1

Addre
ss
xxxx

Stack

B
1

B
2

B
3

Fig.3. Junk byte

insertion.

ISSN 23499842(Online), Volume 1, Special Issue 2(ICITET 15), March 2015

International Journal of Innovative Trends and Emerging Technologies

Paper ID # IC15019 94

E. Conditional Jump Instructions
Conditional jump instructions like, jle(jump if less

than or equal), jge (jump if greater than or equal),

jz(jump if zero), jg

(Jump if greater than) etc., also adds to the control

flow of the procedures in a program. Obfuscation of

the seinstructions can be done similar to

unconditional jump instructions. Conditional jump

instructions can be camouflaged using other ordinary

instructions and the target address can be stored in the

stack.

The problem is that the insertion of junk bytes, which

is responsible for confusing the disassembler and
increasing the instruction disassembly error can’t be

done with conditional instructions.

The basic reason for junk byte insertion is

difficult with conditional instruction is that the

instruction followed by the conditional jump

instruction is a valid instruction point. Inserting junk

bytes at that point will corrupt the program. To take

care of this condition, our method deals with

conditional jumps in a different manner, so as to get

better obfuscation. In this method a junk byte is added

just above the conditional jump instruction. This junk
byte should be a partial byte of an instruction as

explained in . This junk byte will club with the initial

bytes of the conditional jump instruction, resulting in

corrupting the jump instruction and few instructions

after that.

In the example shown in Fig. 6, 10h is the

junk byteaddedabovethe jump instruction and the

instruction adc [esi], bh will be seen when the

program is disassembled.

The semantics of the program will be
changed by this insertion of the junk byte and that is

handled by self modifying code. Reconstruction

instructions are added just like in the case of

unconditional jump. But in this case, the

reconstruction instructions are used to convert the

junk byte into nop instruction no operation

instruction. Thus the semantics of the pro- gram

remains the same during runtime.

The orinstruction in B1 of Fig. 6, converts

the junk byte 10 to 0x90, the opcode of nop

instruction. Similar to the case of unconditional

instructions, reobfuscation instructions are added in
all the successor blocks. In this case, the

reobfuscation instructions obfuscate the nop

instruction back to the junk byte. The and instructions

in B2 and B3 of Fig. 7, converts 0x90, the opcode of

nop instruction, to 0x10.

Fig. 5. Junk byte addition to obfuscate conditional

jumps.

Fig. 6.Obfuscation of conditional jumpinstructions.

F. Indirect Jump Instructions

Indirect jump instructions also add to the control flow

of a program. In an indirect jump instruction the

address location to which the control flow transfer

happens is stored in a register or a memory location.

For example, jmp eax is an indirect jump instruction,
where the control flow is transferred to the address

stored in the register eax, as shown in Fig.

7.Obfuscation of the indirect jump instructions can be

Fig.4. Reobfuscation in loops

ISSN 23499842(Online), Volume 1, Special Issue 2(ICITET 15), March 2015

International Journal of Innovative Trends and Emerging Technologies

Paper ID # IC15019 95

done atCompile time by camouflaging the indirect

jump instruction with normal instructions. The

camouflaged instructions can be reconstructed, by

adding reconstruction instructions above the

camouflaged instruction. However, we have not

considered indirect.

Fig. 7. Control flow of indirect jump.

Jump instruction for obfuscation as it is difficult to
reobfuscate the indirect jump instructions during

runtime. In the proposed algorithm, during runtime

the reconstructed jump instructions are reobfuscated

after the jump. This is done by adding reobfuscation

instructions in the successor blocks. For indirect

jumps the target locations of the jump depends on the

value residing in the register or memory location used

in the indirect jump instruction and hence can change

dynamically. So, if we obfuscate the indirect jump

instructions by camouflaging it at compile time and

reconstructing it during runtime, it will be a onetime
obfuscation, as the reconstructed instruction cannot

be reobfuscated. Another problem is when indirect

jump instruction jumps back creating a loop. In this

case the reconstruction instructions used to convert

the camouflaged instruction to jump instruction get

executed again. So, the reconstruction instructions

should be chosen in such a way that the indirect jump

instruction is not affected when they get executed

more than once. This will limit the instructions that

can be used as reconstruction instructions.

V.IMPLEMENTATION

The proposed obfuscation is carried out at link time
of the compilation process. The implementation

expects a binary pro- gram as input, which is

obfuscated and gives out an obfuscated binary

program as output. The development platforms used

is GNU Linux operating system and the input binary

files are expected in the extended linker format

(ELF). For the implementation of our algorithm at

link time, PLTO, Pentium Link Time Optimizer was

used. The input binary program is fed to PLTO which

creates the control flow graph of the program. The

control flowgraph thus generated is scanned to find
possible candidate instructions to be obfuscated.

Each function of the program is scanned block by

block to find the unconditional jump instructions.

Once the count of the jump instructions that are going

to be obfuscated is finalized then the size of the stack

is expanded. The local variables of each function are

stored in the stack. The activation record for each

function will be of constant size de- fined in the

beginning of a function. It has the space required for

storing local variables, parameters and return value.
Every time a function is called, this constant space in

stack is allotted for the function. Since our method

stores the code information as variables in the stack,

this stack size has to be expanded. The code in the

function which defines the required stack size is

modified according to the requirement. With this

modification, when the function is called it pushes the

stack pointer further and thus incorporating the space

for the new local variables used to store the control

flow information. For each function in the program,

obfuscation is done in three rounds. In the first round

all the unconditional jumps are handled. Junk byte
insertions at locations after unconditional jumps are

done in the second round. Conditional jumps are

handled in the third round of the algorithm. The

process repeats for all the functions. The exact

sequence of implementation in the first round isas

follows. The target address of each unconditional

jump instruction is extracted from the instruction and

is stored in the local variable. The jmp instruction is

then replaced with mov instruction. The basic blocks

in which the reconstruction instructions and

reobfuscation instructions have to be inserted are
calculated. Reconstruction instructions and

reobfuscation, which use the variable where the

address is stored, are inserted in the respective basic

blocks. The successor block of the jmp instruction is

flagged as candidate block for junk byte insertion.

In the second round, all the basic blocks

which are flagged as candidate blocks for junk byte

insertion are visited and from the set of junk bytes,

which are partial instructions, randomly chosen junk

byte is added to the beginning of the basic block.

The third round in the implementation is

similar to the first round. Each basic block with

unconditional jump instructions are visited. The junk
byte to be inserted is randomly chosen and is stored

in the variable in the stack to be used for

reconstruction and reobfuscation instructions. The

junk byte is then inserted just above the

unconditional jump instruction. The basic blocks in

which the reconstruction instructions and

ISSN 23499842(Online), Volume 1, Special Issue 2(ICITET 15), March 2015

International Journal of Innovative Trends and Emerging Technologies

Paper ID # IC15019 96

reobfuscation instructions have to be inserted are

calculated. Instructions which convert the junk bytes

to nop instructions are inserted in the basic block for

reconstruction instructions. The instructions for

converting nop back to the junk byte are inserted in

the basic blocks for reobfuscation instructions.
The obfuscated program should have right

permissions for the reconstruction and reobfuscation

instructions to modify the program code area. We

introduce system calls in the program so that the write

permissions can be given when it is necessary. The

sys_mprotect system call is called at the beginning of

a function, with flags to enable write permission to

the necessary program code area. The write

permissions are disabled by calling the sys_mprotect

system call at the end of the procedure.

Enabling right permissions to the entire code

area for self modification may lead to the risk of
code injection attacks. Hence, we use

sys_mprotect system call in the program to enable

write permissions to address locations that are

needed to be modified. But just enabling write

permissions to the address locations to be modified

will give away the information to the adversary about

the areas ofself modifications. So, a tradeoff has to be

made between giving write permissions to the entire

code area and exact address locations, giving the

adversary the information regarding the self-

modifying addresses. Thus, in our current
implementation, as a compromise, the sys_mprotect

system calls are added at the beginning of a function

and at the exit blocks of a function. When a function

call is made, the sys_mprotect system call gets

executed and enables write permission to the function

code area, thereby enabling write permissions to

reconstruction instructions. The write permissions are

again disabled by sys_mprotect system call at the exit

point of the function. This makes sure that the write

permissions are activated only when a function is

being executed. Just before the function returns, the

write permissions of the function code area are
disabled. The whole program, which is in the

intermediate control flow Representation in the PLTO

framework is then recompiled to binary executable.

VII.CONCLUSION

 In this paper we proposed software obfuscation

algorithm to increase the complexity while doing

reverse engineer of software program. Main idea in

this paper is to remove control flow instruction from

code area and hide them in data area called stack and

re-constructed dynamically on demand. Further the

process of adding junk bytes is used to make the

disassembly process little harder. The evaluation

results show that the proposed system is effective in

confusing dis-assemblers like IDAPro. In comparing

to other obfuscations like signal based obfuscation

the proposed system using control flow approach is

better and cost effectiveness. Obfuscating all the

instructions increases the complexity of the code

which can be reduced by using any others means like

using hash functions to select instructions for

obfuscation. This eventually reduces the complexity

of the program to greater extent.

REFERENCES

[1] Data Rescue [Online]. Available:

http://www.datarescue.com/ [Last accessed: Feb.

14, 2012]

[2] J. Miecznikowski and L. Hendren,

“Decompiling java using staged encapsulation,” in

Proc. Eighth Working Conf. Reverse
Engineering,2001, pp. 368–374.

[3] Digital Law Online, Reverse Engineering

[Online]. Available:http://digital-law-

nline.info/lpdi1.0/treatise25.html [Last accessed:

Feb. 14,2012]

[4]PRNewswire [Online]. Available:

http://www.prnewswire.com/news- releases/siia-

files-six-new-software-piracy-lawsuits-against-

fraud- ulent-online-vendors-across-the-country-

69854267.html [Last ac- cessed: Feb. 14, 2012]

[5] Blizzard [Online]. Available:

www.blizzard.com [Last accessed: Feb.14, 2012]
[6] “Bnetd,” Wikipedia [Online]. Available:

http://en.wikipedia.org/wiki/ Bnetd [Last accessed:

Feb. 14, 2012]

[7] L. Shan and S. Emmanuel, “Mobile agent

protection with self-modifying code,” J. Signal

Process. Syst., vol. 65, pp. 105–116, 2010.

 [8] C. Wang, J. Davidson, J. Hill, and J. Knight,

“Protection of software- based survivability

mechanisms,” Depend. Syst. Netw., pp. 193–

202,2001.

Mankandan.R received the B.E degree in

computer science and Engineering from the

Thirumalai Engineering College affiliated with Anna

University and M.E degree in Computer Science and

Engineering from St Peter’s University and perusing

Ph.D degree in computer science and

Engineering in the area of Cryptography and

Network Security at St Peter’s University

