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Abstract:  
The modern on-chip has increased their application thereby increasing the transaction in the NoCs. We have 

improved the communication efficiently by using advanced extensible interface (AXI) and open core 

protocol(OCP). The increasing transaction causes the deadlock problems in SoC. If the transaction are not 

properly accessed the deadlock problem occur. A deadlock problem occurs if a cycle exists in the bus. The 

transaction is represented as graph to resolve the deadlock problem. We propose deadlock free transaction by 
logical analysis. 

 

I. INTRODUCTION 

With the rapid increase in the modern electronic 

systems, more IP cores are embedded in the system 

on-chip Designs. This increasing core in the system 

causes incredible  increase in the transaction. 

Therefore, the major factor is designing the 

communication architecture for the modern 

electronic systems which dominates the overall  

performance of the system. In the early periods the 
popular communication used are the advanced 

peripheral buses and advanced high-performance 

bus. Both these buses use same technique, one 

master controlling only one slave. The 

communication protocols in AXI [1] and OCP [2], 

supports many advanced transaction. The advanced 

transaction is burst, pipeline and out-of-order 

transaction. Among these transaction out-of-order 

transaction is the more efficient transaction [4][5]. 

In Out-of-order transaction data does not wait for 

the previous transaction to complete. Though the 
out-of-order transaction is fast than others but it 

pays ways for deadlock problems. The deadlock 

problem is when the transaction stalls and forms a 

wait and hold state. The wait-and-hold is a situation 

when a cycle exit in the transaction and a loop 

occurs in the system. Thus the data are not 

transmitted and locked in the loop. This may crash 

the whole system [6]. The master when accessing a 

slave it sends a request to the slave. The slave in 

turn sends a response to the master. After the 

response are returned and accepted the transaction 

is complete. After the transaction is complete the 
master should release the slave. In AXI and OCP 

the master tags an ID to the transaction in such a 

way all the request and response transaction are 

accessed in ID order. This makes the transaction 

much more delay [6]. In this paper, we look over 

the deadlock problems. To overcome the deadlock 

problem first we develop a graphical representation 

of the bus. The bus status model has the model of 

the master and the slave transaction. If a cycle 

exists in the transaction then the system is called 

unsafe state that results in deadlock. Based on this 

problem we propose a technique to resolve the 

deadlock thus achieving greater communication 

efficiency .In the existing system, they addressed 

the deadlock problem in an on-chip bus system 

supporting out-of-order transactions. They 

presented a graphic model that can well represent 

the status of a bus system and showed that a cycle 

exists in the graph if and only if the bus system is 
in an unsafe state that may lead to a bus deadlock. 

Based on this model, they proposed a novel bus 

design technique that can efficiently resolve the bus 

deadlock problem.. 

 

II. RELATED WORK 

 

The concept of memory access scheduling in which 

DRAM operations are scheduled, possible 

completing memory references out of order to 

optimize memory system performance was 
presented. A priority expression which considers 

three factors: wait time of a burst, burst length, 

priority of read or write accesses. The expression is 

used to select a burst from the write or read queue 

for bank arbitration. The proposed AXI bus 

possesses multiple independent channels to support 

multiple simultaneous address and data streams. A 

shared-link AXI interconnect can provide good 

performance while requiring less than half of the 

hardware required by a crossbar AXI 

implementation. The performance analysis of a 

shared-link AXI was presented. This paper 
proposes the issues and share experiences on using 

Open Core Protocol (OCP) as the standard 

interface protocol, defining reusable profiles to fit 

different IPs, on-chip interconnection design, 

verification, and SoC integration with them was 

presented. The usage of OCP as an interface 

Standard was given. The establishment of profiles 

is proposed for easy adoption and adaptation. Bus 

fabric design schemes are demonstrated to show 

the simplicity of interconnection IP design using 

these profiles. proposed for realizing high-
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performance SoCs, it is crucial for the 

communication architecture to be highly 

customized towards application traffic profiles. 

Since the communication requirements of SoC 

components can vary significantly over time, 

communication architectures that dynamically 
detect and adapt to such variations can substantially 

improve system performance. Thus the FLEXBUS, 

architecture capable of dynamically controlling 

both the communication topology, and the mapping 

of components to the communication architecture 

was presented. 

 

III. NETWORK ON CHIP 

Network on chip or network on a chip (NoC) is a 

communication subsystem on an integrated circuit 

typically between IP cores in a system on a chip 

(SoC). Network on chip is an emerging paradigm 
for communication within large VLSI systems 

implemented on a single silicon chip. 

 

a)  NOC topology 

 

i) 2D Mesh 

 
Fig 1. 2D-Mesh topology 

 

ii) Star topology 

 

 
Fig 2. Star topology 

 

 

 

 b) Bus transaction 

 

The basic bus transactions are single and burst 

transactions, where a single transaction is one that 
requests only one response whereas a burst 

transaction is one that requests multiple responses. 

These basic transactions can be either pipelined or 

no pipelined. As commonly recognized, a pipelined 

transaction is one that can be issued before its 

preceding transaction is completed. As an out-of-

order transaction is one that may be completed 

without waiting for its preceding transactions, all 

out-of-order transactions can be considered as 

pipelined ones. In AXI or OCP, the pipelined 
transactions can be further divided into tagged and 

untagged ones, where all untagged transactions 

must be executed in order, whereas the execution 

orders of the tagged ones depend on the IDs they 

are tagged. In this paper, we comply with the 

following order constraints.  

1) All untagged transactions must be executed in 

order.  

2) All tagged transactions with the same tag ID 

must be executed in order. 

3) Two transactions tagged with different IDs can 

be executed out of order.  
4) There is no order restriction on the execution 

between one tagged transaction and an untagged 

transaction 

 
Fig 3. Basic Bus Transaction 

 

 
 

Fig 4. Pipelined Transactions with Buffers in the 

Bus, And and  Pipelined Transactions with Buffers 

in the Slave. 
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c) Bus Dead lock 

 

Bus deadlock is a problem that occurs when a set 

of IP cores communicating through a bus system is 

involved in a circular wait-and-old state that cannot 

be resolved. This problem may crash a bus system 
as none of the IP cores involved in the deadlock 

can continue its functions. In, the authors invest the 

bus deadlock problem of a system that allows a 

master to execute a process only if the master is 

granted to access all required slaves of the process 

and each master will hold the slaves granted to it 

until all its required slaves are granted to it. A bus 

deadlock happens when each master in a set of 

masters is holding a slave and waiting for another 

slave held by another master in the set. In this type 

of bus deadlocks, the relation between masters and 

slaves is similar to that between processes and 
resources in an operating system (OS) where a 

deadlock occurs when there is a circular wait-and-

hold relation among a set of processes and 

resources. A resource allocation graph (RAG) is 

commonly utilized to represent the status of 

resource allocation in an OS. A vertex in a RAG 

represents a process or a resource. A directed edge 

from a process vertex to a resource vertex denotes 

that the process is requesting the resource, and one 

from a resource vertex to a process vertex denotes 

that the resource is being held by the process. In an 
OS, a deadlock may occur when a cycle exists in 

the RAG. To formally describe the deadlock 

problem considered, throughout this paper we 

make the following assumptions about the bus 

systems. 1) All components in a bus-based system, 

including masters, slaves, and buses, are 

compatible with OCP or AXI protocols. In 

particular, we assume that a slave must return 

responses of transactions with the same tag ID in 

order as mentioned before. 2) An arbiter grants a 

master to access a slave only when the master has 

the highest priority among the masters being 
requesting to access the slave and the slave is 

available to process the request. As a result, when a 

slave accepts a request from a master, it will return 

the response after some finite latency. 3) When a 

response returned from a slave violates any order 

constraint, the bus is responsible for avoiding the 

violation by taking some appropriate action such as 

buffering or not accepting the response. Buffering 

the responses that cannot be accepted may require 

large area overhead and thus in this paper, we 

assume that the bus will not accept any response 
that violates any order constraint. 

 

IV. ON CHIP BUS DESIGN 
Compared to previous bus designs, the supporting 

of various advanced transaction types in OCP and 

AXI has emphasized. As shown in Fig.5 our bus 

supports single, burst, pipelined (outstanding), and 

tagged transactions. We divide the components of 

the bus system into three parts:  

1) The components for each master interface;  

2) The components for each slave interface; and  

3) The components in the center that will be shared 

by all masters and slaves. Fig. 3.3 shows a bus 
system with one master and one slave. If l masters 

(m slaves) are to be employed, l (m) copies of the 

components in the master (slave) interface should 

be employed, whereas only one copy of the 

components in the center is needed. A tagged 

transaction starts with a master issuing a request 

with an ID to the bus. In the request phase, if the 

Request Buffer in the bus is not full, the bus 

acknowledges the master and the request is stored 

in the Request Buffer. The Decoder then decodes 

the transaction address of the request, and the 

Arbiter arbitrates whether the request can be 
granted to access the target slave. If it can be 

granted, the Arbiter forwards the request to the 

slave by controlling the corresponding 

multiplexors, and the index of the target slave is 

recorded in one of the Recorders, in the way that 

the transactions with the same tag are recorded in 

the same Recorder The number of Recorders is 

equal to the number of IDs that the corresponding 

master can assign. Also the size of each Recorder is 

equal to the pipeline depth such that it is just 

enough to record all transactions that are not 
completed. The Request Busy Checker checks 

whether the request is completed or not to assist the 

arbitration. For a write request, the corresponding 

write data are stored in the Write Data Buffer, and 

the Tagged Transaction Access Controller controls 

the multiplexors to decide from which master the 

write data are to be provided. After the slave 

accepts the request, it acknowledges the bus, and 

the acknowledgment is forwarded to the Request 

Buffer under the control of the Arbiter. Finally, the 

response is sent to the master when the master is 

able to receive it. In the bus model, the masters and 
slaves are connected by the bus in a crossbar 

manner and thus parallel transactions can be 

executed as long as no contention occurs. When 

more than one request from different masters to 

access the same slave arrives simultaneously, the 

arbiter will determine whether the request with the 

highest priority can be granted or not. If it cannot 

be granted, the arbiter will start a new arbitration 

with possibly some priority updating (such as 

round robin). If it can be granted, the request will 

be forwarded to the corresponding slave. Once a 
request is granted, it can be processed in parallel 

with other granted requests. As a result, high 

communication parallelism can be achieved by this 

bus design. 
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Fig 5. Bus Supporting Tagged Transactions 

 

V. DEADLOCK AVOIDANCE CONCEPT 

We will use the designs with two IDs and two 

slaves in the following description to illustrate the 

various deadlock avoidance schemes. The single 

slave scheme only allows tagged requests to access 

the same slave. 

 Fig 6 Legal requests under single slave scheme. 

 

 

  

 

 Fig 7 Legal requests under our DALS 

 

VI. HARDWARE IMPLEMENTATION OF 

DALs 
The hardware design of our DALS attempts to stall 

the least number of transactions. In addition, we 

also target to complete the decision of whether to 

stall a transaction in one clock cycle. We propose a 

hardware implementation that contains a number of 

waiting relation detectors and a number of unsafe 

state predictors which altogether requires only one 

clock cycle for the stall decision. Each waiting 

relation detector determines whether a pair of 

slaves has a waiting relation between them. 

According to the results of these detectors, the 
unsafe state predictors predict whether forwarding 

a request will result in an unsafe state. These 

designs are detailed next.. 

  
 

Fig 8 hardware implementation of DAL 

1) Waiting Relation Detectors: As mentioned in 

Section III, we allocate a recorder for each ID in 

the bus system, and the index of a target slave of a 

tagged transaction is recorded in a corresponding 

recorder when the transaction is accepted by the 

slave. Responses from different slaves with the 

same ID must be returned in the order that they are 

recorded in the recorder. The hardware 
implementation of the waiting relation detector 

detecting Wdij is shown in Fig. 3.18. The left side 

shows a recorder to record the transactions with tag 

IDd . The recorder is implemented using a shift 

queue with the following features. 

1) The indices of the slaves accepted are put in the 

recorder in a first-in-first-out manner. 

2) The first entry (P0) always contains the index of 

the slave that accepts the earliest transaction among 

all the accepted but not completed transactions with 

tag IDd , which is corresponding to the prime edge 

associated with IDd in the corresponding BSG. 
3) When the response from the slave recorded in P0 

is returned, a shift operation is performed to 

remove the index of the slave from the recorder and 

all the indices of the slaves in the remaining entries 

of the buffer are shifted toward P0 by one position. 

The P0 and P1 entries of the IDd recorder in Fig. 

13 shows that a request to Sj with IDd is first 
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accepted by Sj and then a request to Si with IDd is 

accepted by Si. Now a new transaction also tagged 

with IDd is requested. The proposed waiting 

relation detector will detect the waiting relations of 

already accepted requests as well as the waiting 

relations if the new request is accepted as described 
below. 

TABLE I 

A) Waiting table 

 
 

   TABLE II 

B) Comparison of bus performance with various bus 

deadlock techniques under various numbers of slaves 

 
 

V. SIMULATION RESULT 

 

 
Figure 5.1 A Master To Slave Transaction 

 

 
 
Figure 5.2 A Deadlock In The Transaction 

 
 

Figure 5.3 Deadlock release 

 

VI. CONCULSION 

 

In this project, we had designed a Master – Slave 
transaction module which transmits the data when 

the corresponding requests and responses are 

performed. The slave works when the master 

makes a request. Likely, we had designed a 

deadlock occurrence module and a method to 

release that deadlock is also designed. This 

deadlock release module which clears the condition 

for the occurrence of deadlock. Thus all these 

designs are designed and verified successfully 

using Modelsim Simulator. 
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