
ISSN 23499842(Online), Volume 1, Special Issue 2(ICITET 15), March 2015

International Journal of Innovative Trends and Emerging Technologies

Paper ID # IC15025 120

DESIGN OF NOCs TO AVOID DEADLOCK PROBLEM IN ON-

CHIP BUSES

N.PRIYADHARSHINI1, S.KALAISELVY2
1PG Student, VLSI Design, 2Assistant Professor (Sr.G), 1,2Department of ECE,

1,2Surya Group Of Institutions, India.

Abstract:
The modern on-chip has increased their application thereby increasing the transaction in the NoCs. We have

improved the communication efficiently by using advanced extensible interface (AXI) and open core

protocol(OCP). The increasing transaction causes the deadlock problems in SoC. If the transaction are not

properly accessed the deadlock problem occur. A deadlock problem occurs if a cycle exists in the bus. The

transaction is represented as graph to resolve the deadlock problem. We propose deadlock free transaction by
logical analysis.

I. INTRODUCTION

With the rapid increase in the modern electronic

systems, more IP cores are embedded in the system

on-chip Designs. This increasing core in the system

causes incredible increase in the transaction.

Therefore, the major factor is designing the

communication architecture for the modern

electronic systems which dominates the overall

performance of the system. In the early periods the
popular communication used are the advanced

peripheral buses and advanced high-performance

bus. Both these buses use same technique, one

master controlling only one slave. The

communication protocols in AXI [1] and OCP [2],

supports many advanced transaction. The advanced

transaction is burst, pipeline and out-of-order

transaction. Among these transaction out-of-order

transaction is the more efficient transaction [4][5].

In Out-of-order transaction data does not wait for

the previous transaction to complete. Though the
out-of-order transaction is fast than others but it

pays ways for deadlock problems. The deadlock

problem is when the transaction stalls and forms a

wait and hold state. The wait-and-hold is a situation

when a cycle exit in the transaction and a loop

occurs in the system. Thus the data are not

transmitted and locked in the loop. This may crash

the whole system [6]. The master when accessing a

slave it sends a request to the slave. The slave in

turn sends a response to the master. After the

response are returned and accepted the transaction

is complete. After the transaction is complete the
master should release the slave. In AXI and OCP

the master tags an ID to the transaction in such a

way all the request and response transaction are

accessed in ID order. This makes the transaction

much more delay [6]. In this paper, we look over

the deadlock problems. To overcome the deadlock

problem first we develop a graphical representation

of the bus. The bus status model has the model of

the master and the slave transaction. If a cycle

exists in the transaction then the system is called

unsafe state that results in deadlock. Based on this

problem we propose a technique to resolve the

deadlock thus achieving greater communication

efficiency .In the existing system, they addressed

the deadlock problem in an on-chip bus system

supporting out-of-order transactions. They

presented a graphic model that can well represent

the status of a bus system and showed that a cycle

exists in the graph if and only if the bus system is
in an unsafe state that may lead to a bus deadlock.

Based on this model, they proposed a novel bus

design technique that can efficiently resolve the bus

deadlock problem..

II. RELATED WORK

The concept of memory access scheduling in which

DRAM operations are scheduled, possible

completing memory references out of order to

optimize memory system performance was
presented. A priority expression which considers

three factors: wait time of a burst, burst length,

priority of read or write accesses. The expression is

used to select a burst from the write or read queue

for bank arbitration. The proposed AXI bus

possesses multiple independent channels to support

multiple simultaneous address and data streams. A

shared-link AXI interconnect can provide good

performance while requiring less than half of the

hardware required by a crossbar AXI

implementation. The performance analysis of a

shared-link AXI was presented. This paper
proposes the issues and share experiences on using

Open Core Protocol (OCP) as the standard

interface protocol, defining reusable profiles to fit

different IPs, on-chip interconnection design,

verification, and SoC integration with them was

presented. The usage of OCP as an interface

Standard was given. The establishment of profiles

is proposed for easy adoption and adaptation. Bus

fabric design schemes are demonstrated to show

the simplicity of interconnection IP design using

these profiles. proposed for realizing high-

ISSN 23499842(Online), Volume 1, Special Issue 2(ICITET 15), March 2015

International Journal of Innovative Trends and Emerging Technologies

Paper ID # IC15025 121

performance SoCs, it is crucial for the

communication architecture to be highly

customized towards application traffic profiles.

Since the communication requirements of SoC

components can vary significantly over time,

communication architectures that dynamically
detect and adapt to such variations can substantially

improve system performance. Thus the FLEXBUS,

architecture capable of dynamically controlling

both the communication topology, and the mapping

of components to the communication architecture

was presented.

III. NETWORK ON CHIP

Network on chip or network on a chip (NoC) is a

communication subsystem on an integrated circuit

typically between IP cores in a system on a chip

(SoC). Network on chip is an emerging paradigm
for communication within large VLSI systems

implemented on a single silicon chip.

a) NOC topology

i) 2D Mesh

Fig 1. 2D-Mesh topology

ii) Star topology

Fig 2. Star topology

 b) Bus transaction

The basic bus transactions are single and burst

transactions, where a single transaction is one that
requests only one response whereas a burst

transaction is one that requests multiple responses.

These basic transactions can be either pipelined or

no pipelined. As commonly recognized, a pipelined

transaction is one that can be issued before its

preceding transaction is completed. As an out-of-

order transaction is one that may be completed

without waiting for its preceding transactions, all

out-of-order transactions can be considered as

pipelined ones. In AXI or OCP, the pipelined
transactions can be further divided into tagged and

untagged ones, where all untagged transactions

must be executed in order, whereas the execution

orders of the tagged ones depend on the IDs they

are tagged. In this paper, we comply with the

following order constraints.

1) All untagged transactions must be executed in

order.

2) All tagged transactions with the same tag ID

must be executed in order.

3) Two transactions tagged with different IDs can

be executed out of order.
4) There is no order restriction on the execution

between one tagged transaction and an untagged

transaction

Fig 3. Basic Bus Transaction

Fig 4. Pipelined Transactions with Buffers in the

Bus, And and Pipelined Transactions with Buffers

in the Slave.

ISSN 23499842(Online), Volume 1, Special Issue 2(ICITET 15), March 2015

International Journal of Innovative Trends and Emerging Technologies

Paper ID # IC15025 122

c) Bus Dead lock

Bus deadlock is a problem that occurs when a set

of IP cores communicating through a bus system is

involved in a circular wait-and-old state that cannot

be resolved. This problem may crash a bus system
as none of the IP cores involved in the deadlock

can continue its functions. In, the authors invest the

bus deadlock problem of a system that allows a

master to execute a process only if the master is

granted to access all required slaves of the process

and each master will hold the slaves granted to it

until all its required slaves are granted to it. A bus

deadlock happens when each master in a set of

masters is holding a slave and waiting for another

slave held by another master in the set. In this type

of bus deadlocks, the relation between masters and

slaves is similar to that between processes and
resources in an operating system (OS) where a

deadlock occurs when there is a circular wait-and-

hold relation among a set of processes and

resources. A resource allocation graph (RAG) is

commonly utilized to represent the status of

resource allocation in an OS. A vertex in a RAG

represents a process or a resource. A directed edge

from a process vertex to a resource vertex denotes

that the process is requesting the resource, and one

from a resource vertex to a process vertex denotes

that the resource is being held by the process. In an
OS, a deadlock may occur when a cycle exists in

the RAG. To formally describe the deadlock

problem considered, throughout this paper we

make the following assumptions about the bus

systems. 1) All components in a bus-based system,

including masters, slaves, and buses, are

compatible with OCP or AXI protocols. In

particular, we assume that a slave must return

responses of transactions with the same tag ID in

order as mentioned before. 2) An arbiter grants a

master to access a slave only when the master has

the highest priority among the masters being
requesting to access the slave and the slave is

available to process the request. As a result, when a

slave accepts a request from a master, it will return

the response after some finite latency. 3) When a

response returned from a slave violates any order

constraint, the bus is responsible for avoiding the

violation by taking some appropriate action such as

buffering or not accepting the response. Buffering

the responses that cannot be accepted may require

large area overhead and thus in this paper, we

assume that the bus will not accept any response
that violates any order constraint.

IV. ON CHIP BUS DESIGN
Compared to previous bus designs, the supporting

of various advanced transaction types in OCP and

AXI has emphasized. As shown in Fig.5 our bus

supports single, burst, pipelined (outstanding), and

tagged transactions. We divide the components of

the bus system into three parts:

1) The components for each master interface;

2) The components for each slave interface; and

3) The components in the center that will be shared

by all masters and slaves. Fig. 3.3 shows a bus
system with one master and one slave. If l masters

(m slaves) are to be employed, l (m) copies of the

components in the master (slave) interface should

be employed, whereas only one copy of the

components in the center is needed. A tagged

transaction starts with a master issuing a request

with an ID to the bus. In the request phase, if the

Request Buffer in the bus is not full, the bus

acknowledges the master and the request is stored

in the Request Buffer. The Decoder then decodes

the transaction address of the request, and the

Arbiter arbitrates whether the request can be
granted to access the target slave. If it can be

granted, the Arbiter forwards the request to the

slave by controlling the corresponding

multiplexors, and the index of the target slave is

recorded in one of the Recorders, in the way that

the transactions with the same tag are recorded in

the same Recorder The number of Recorders is

equal to the number of IDs that the corresponding

master can assign. Also the size of each Recorder is

equal to the pipeline depth such that it is just

enough to record all transactions that are not
completed. The Request Busy Checker checks

whether the request is completed or not to assist the

arbitration. For a write request, the corresponding

write data are stored in the Write Data Buffer, and

the Tagged Transaction Access Controller controls

the multiplexors to decide from which master the

write data are to be provided. After the slave

accepts the request, it acknowledges the bus, and

the acknowledgment is forwarded to the Request

Buffer under the control of the Arbiter. Finally, the

response is sent to the master when the master is

able to receive it. In the bus model, the masters and
slaves are connected by the bus in a crossbar

manner and thus parallel transactions can be

executed as long as no contention occurs. When

more than one request from different masters to

access the same slave arrives simultaneously, the

arbiter will determine whether the request with the

highest priority can be granted or not. If it cannot

be granted, the arbiter will start a new arbitration

with possibly some priority updating (such as

round robin). If it can be granted, the request will

be forwarded to the corresponding slave. Once a
request is granted, it can be processed in parallel

with other granted requests. As a result, high

communication parallelism can be achieved by this

bus design.

ISSN 23499842(Online), Volume 1, Special Issue 2(ICITET 15), March 2015

International Journal of Innovative Trends and Emerging Technologies

Paper ID # IC15025 123

Fig 5. Bus Supporting Tagged Transactions

V. DEADLOCK AVOIDANCE CONCEPT

We will use the designs with two IDs and two

slaves in the following description to illustrate the

various deadlock avoidance schemes. The single

slave scheme only allows tagged requests to access

the same slave.

 Fig 6 Legal requests under single slave scheme.

 Fig 7 Legal requests under our DALS

VI. HARDWARE IMPLEMENTATION OF

DALs
The hardware design of our DALS attempts to stall

the least number of transactions. In addition, we

also target to complete the decision of whether to

stall a transaction in one clock cycle. We propose a

hardware implementation that contains a number of

waiting relation detectors and a number of unsafe

state predictors which altogether requires only one

clock cycle for the stall decision. Each waiting

relation detector determines whether a pair of

slaves has a waiting relation between them.

According to the results of these detectors, the
unsafe state predictors predict whether forwarding

a request will result in an unsafe state. These

designs are detailed next..

Fig 8 hardware implementation of DAL

1) Waiting Relation Detectors: As mentioned in

Section III, we allocate a recorder for each ID in

the bus system, and the index of a target slave of a

tagged transaction is recorded in a corresponding

recorder when the transaction is accepted by the

slave. Responses from different slaves with the

same ID must be returned in the order that they are

recorded in the recorder. The hardware
implementation of the waiting relation detector

detecting Wdij is shown in Fig. 3.18. The left side

shows a recorder to record the transactions with tag

IDd . The recorder is implemented using a shift

queue with the following features.

1) The indices of the slaves accepted are put in the

recorder in a first-in-first-out manner.

2) The first entry (P0) always contains the index of

the slave that accepts the earliest transaction among

all the accepted but not completed transactions with

tag IDd , which is corresponding to the prime edge

associated with IDd in the corresponding BSG.
3) When the response from the slave recorded in P0

is returned, a shift operation is performed to

remove the index of the slave from the recorder and

all the indices of the slaves in the remaining entries

of the buffer are shifted toward P0 by one position.

The P0 and P1 entries of the IDd recorder in Fig.

13 shows that a request to Sj with IDd is first

ISSN 23499842(Online), Volume 1, Special Issue 2(ICITET 15), March 2015

International Journal of Innovative Trends and Emerging Technologies

Paper ID # IC15025 124

accepted by Sj and then a request to Si with IDd is

accepted by Si. Now a new transaction also tagged

with IDd is requested. The proposed waiting

relation detector will detect the waiting relations of

already accepted requests as well as the waiting

relations if the new request is accepted as described
below.

TABLE I

A) Waiting table

 TABLE II

B) Comparison of bus performance with various bus

deadlock techniques under various numbers of slaves

V. SIMULATION RESULT

Figure 5.1 A Master To Slave Transaction

Figure 5.2 A Deadlock In The Transaction

Figure 5.3 Deadlock release

VI. CONCULSION

In this project, we had designed a Master – Slave
transaction module which transmits the data when

the corresponding requests and responses are

performed. The slave works when the master

makes a request. Likely, we had designed a

deadlock occurrence module and a method to

release that deadlock is also designed. This

deadlock release module which clears the condition

for the occurrence of deadlock. Thus all these

designs are designed and verified successfully

using Modelsim Simulator.

REFERENCES
[1] Advanced Microcontroller Bus Architecture

Specification. (1997)

[Online]. Available: http://www.arm.com

[2] Open Core Protocol Specification. (2006)

[Online]. Available:http://www.ocpip.org/home

[3] A. T. Tran and B. M. Bass, “RoShaQ: High-

performance on-chip routerwith shared queues,” in

Proc. IEEE 29th Int. Conf. Comput. Design, Oct.

2011, pp. 232–238.

[4] J. Shao and B. T. Davis, “A burst scheduling

access reordering mechanism,” in Proc. IEEE 13th

Int. Symp. High Perform. Comput. Archit.,Feb.

2007, pp. 285–294.

[5] J. Pang, L. Yang, L. Shi, T. Zhang, D. Wang,

and C. Hou, “A priorityexpression- based burst

scheduling of memory reordering access,” in Proc.

Int. Conf. Embedded Comput. Syst., Archit.,

Model., Simul., Jul. 2008, pp. 203–209.

[6] X. Xiao and J. J. Lee, “A true O(1) parallel

deadlock detection algorithm for single-unit

resource systems and its hardware

implementation,” IEEE Trans. Parallel Distrib.

Syst., vol. 21, no. 1, pp. 4–19, Jan. 2010.

[7] A. Silberschatz, P. B. Galvin, and G. Gagen,

Operating System Concepts, 7th ed. New York,

USA: Wiley, 1993.

