
ISSN 23499842(Online), Volume 1, Special Issue 2(ICITET 15), March 2015

International Journal of Innovative Trends and Emerging Technologies

Paper ID # IC15061

ROBUST SCAN FLIP FLOP TECHNIQUE FOR SECURED

ADVANCED ENCRYPTION STANDARD
D. UMESH

1
, K. RAMESH

2

1
PG Student, VLSI Design,

2
Assistant Professor,

1,2
Dept of Electronics and Communication Engineering,

1,2
SRM University, Kattankulathur, India

Abstract: The proposed is a scan-protection scheme that provides testing facilities both at production

time and over the course of the circuit’s life. The underlying principle is to scan-in both input vectors and

expected responses and to compare expected and actual responses within the circuit. This scheme avoids

the use of authentication tests. The proposed scan-protection scheme for the most secured cryptographic

algorithm (AES Algorithm) to implement on any hardware with BIST architecture. This proposed

method uses a Robust Scan Flip-Flops (RSFF) that delivers different outputs state for the same scan

input. Thus the technique is unsusceptible to side channel attacks that hackers use to easily scan the

encryption/decryption key and algorithm implementation.

I. INTRODUCTION

In today‟s digital world, encryption is

emerging as a disintegrable part of all

communication networks and information

processing systems, for protecting both stored data

and transmitted data. Encryption is the

transformation of message input data (known as

plaintext) into unintelligible data (known as cipher

text) through an algorithm referred to as cipher.

There are numerous encryption algorithms are

commonly used in computation, but the U.S.

government has adopted the Advanced Encryption

Standard (AES) to be used by Federal departments

and agencies for protecting sensitive information.

The National Institute of Standards and

Technology (NIST) have published the

specifications of this encryption standard in the

Federal Information Processing Standards (FIPS)

Publication 1997.

Any conventional symmetric cipher, such

as AES, requires a single key for both encryption

and decryption, which is independent of the

plaintext and the cipher itself. It is impractical to

retrieve the plaintext solely based on the cipher text

and the encryption algorithm, without knowing the

encryption key. Thus, the secrecy of the

encryption key is of high importance in symmetric

ciphers such as AES. Software implementation of

encryption algorithms does not provide ultimate

secrecy of the key since the operating system, on

which the encryption software runs; it is always

vulnerable to attacks.

A) ENCRYPTION AND KEY BASED APPROACH

Different versions of AES algorithm

existing today (AES128, AES196, and AES256)

depending on the size of the encryption key. In this

project, a hardware model for implementing the

AES128 algorithm was developed using the

Verilog hardware description language. A unique

feature of the design proposed in this project is that

the round keys, which are consumed during

different iterations of encryption, are generated in

parallel with the encryption process.

B) LANGUAGES

 The hardware model was completely

verified using a test bench, which took an

advantage of the Verilog‟s programming feature,

by constructing random test objects and providing

them to the model. Then, the verified model was

synthesized using the Synopsis Design-Compiler

tool to get an estimated number of gates, area and

timing of the hardware model. Finally, the

performances of software and hardware

implementations were compared.

Cryptographic systems are generally classified on

the following basis:

1. TYPE OF OPERATIONS USED TO FOR

TRANSFORMING PLAINTEXT TO CIPHER

TEXT: Most encryption algorithms are based on

two general principles,

a.Substitution, in which each element in plain text

is mapped to some other element to form the cipher

text

b.Transposition, in which elements in plaintext are

rearranged to form cipher text.

2.NUMBER OF KEYS USED: If both the sender

and the receiver use a same key then such a system

is referred to as Symmetric, single-key, secret-key

or conventional encryption. If the sender and

receiver use different keys, then such a system is

called Asymmetric, Two-key, or private-key

encryption.

3.PROCESSING OF PLAIN TEXT: A Block cipher

process one block input at a time, producing an

output for each input block. A Stream cipher

processes the input elements continuously

producing output elements on the fly.

Most of the cryptographic algorithms are either

symmetric or asymmetric key algorithms.

4.SECRET KEY CRYPTOGRAPHY: This type of

cryptosystem uses the same key for both encryption

ISSN 23499842(Online), Volume 1, Special Issue 2(ICITET 15), March 2015

International Journal of Innovative Trends and Emerging Technologies

Paper ID # IC15061

and decryption. Some of the advantages of such a

system are

 Very fast relative to public key

cryptography

 Considered secure, as long as the key is

strong

Symmetric key cryptosystems have some

disadvantages too. Exchange and administration of

the key becomes complicated. Non-repudiation is

not possible. Some of the examples of Symmetric

key cryptosystems include DES, 3-DES, RC4, RC5

etc.

5.PUBLIC KEY CRYPTOGRAPHY

 This type of cryptosystems uses different

keys for encryption and decryption. Each user has a

public key, which is known to all others, and a

private key, which remains a secret. The private

key and public key are mathematically linked.

Encryption is performed with the public key and

the decryption is performed with the private key.

Public key cryptosystems are considered to be very

secure and supports Non-repudiation. No exchange

of keys is required thus reducing key

administration to a minimum. But it is much slower

than Symmetric key algorithms and the cipher text

tend to be much larger than plaintext. Some of the

examples of public key cryptosystems include

Diffie-Hellman, RSA and Elliptic Curve

Cryptography.

Therefore, the implementations of these

two transformations affects the implementation of

the whole AES tremendously. Later in this chapter,

the implementation variations of the S-box and

inverse S-box including the composite field

implementations are explained in detail.

SECURITY OF AES

Three possible approaches to attacking the AES

algorithm are as follows:

Brute Force: This involves trying out all the

possible private keys.

Mathematical attacks: There are several

approaches, all equivalent in effect to factoring the

product of 2 primes.

Timing attacks: These depend on the running time

of the decryption algorithm.

EXISTING SYSTEM

 And the composite field S-box and Inverse

S-box are divided into many blocks and LUT‟s are

used for both S-box and Inverse S-box and

optimum solutions were found. Whereas this

method is not opted for high speed implementation.

And finally parameters are analyzed with help of

EDA tools.

PROPOSED SYSTEM

In our proposed approach we introduce the

new combinational logic for S-box and Inverse S-

box in order to find the most optimum solutions

and we also analyzed all required parameters to

prove that the proposed system is not only effective

in calculations and also give proper efficiency in

speed ,power and area through hardware

implementation.

INPUTS, OUTPUTS AND THE STATE

 The plaintext input and cipher text output

for the AES algorithms are blocks of 128 bits. The

cipher key input is a sequence of 128, 192 or 256

bits. In other words the length of the cipher key,

Nk, is 4, 6 or 8 words which represent the number

of columns in the cipher key. The AES algorithm is

categorized into three versions based on the cipher

key length. The number of rounds of encryption for

each AES version depends on the cipher key size.

In the AES algorithm, the number of

rounds is represented by Nr, where Nr = 10 when Nk

= 4, Nr = 12 when Nk = 6, and Nr = 14 when Nk =

8. The following table illustrated the variations of

the AES algorithm. For the AES algorithm the

block size (Nb), which represents the number of

columns comprising the State is Nb= 4.

 The basic processing unit for the AES

algorithm is a byte. As a result, the plaintext,

cipher text and the cipher key are arranged and

processed as arrays of bytes.

For an input, an output or a cipher key

denoted by a, the bytes in the resulting array are

referenced as an , where n is in one of the following

ranges:

Block length = 128 bits, 0 <= n < 16

Key length = 128 bits, 0 <= n < 16

Key length = 192 bits, 0 <= n < 24

Key length = 256 bits, 0 <= n < 24

All byte values in the AES algorithm are presented

as the concatenation of their individual bit values

between braces in the order {b7, b6, b5, b4, b3, b2,

b1, b0}. All the AES algorithm operations are

performed on a two dimensional 4x4 array of bytes

which is called the State, and any individual byte

within the State is referred to as sr,c, where letter „r‟

represent the row and letter „c‟ denotes the column.

At the beginning of the encryption

process, the State is populated with the plaintext.

Then the cipher performs a set of substitutions and

permutations on the State. After the cipher

operations are conducted on the State, the final

value of the state is copied to the cipher text output.

 CIPHER TRANSFORMATIONS

The AES cipher either operates on

individual bytes of the State or an entire

row/column. At the start of the cipher, the input is

copied into the State and then, an initial Round Key

addition is performed on the State. Round keys are

derived from the cipher key using the Key

Expansion routine. The key expansion routine

generates a series of round keys for each round of

transformations that are performed on the State. It

consists of the following four steps. Both the LUT

ISSN 23499842(Online), Volume 1, Special Issue 2(ICITET 15), March 2015

International Journal of Innovative Trends and Emerging Technologies

Paper ID # IC15061

based method and the non LUT based method

consists of all these four steps.

II. IMPLEMENTATION OF AES

ALGORITHM USING LUT METHOD

AES has a fixed block size of 128 bits called a

state. Block length is limited to 128 bit

 The key size can be independently

specified to 128, 192 or 256 bits

 Number of rounds, Nr, depends on key

size

 Each round is a repetition of functions that

perform a transformation over State array

 Consists of 4 main functions: one

permutation and three substitutions

 Substitute bytes, Shift rows, Mix columns, Add

round key.

BLOCK DIAGRAM OF AES

Fig.2.1 - Steps in AES algorithm

ADDROUNDKEY– round key is added to the

State using XOR operation.

MIXCOLUMNS – takes all the columns of the

State and mixes their data, independently of one

another, making use of arithmetic over GF(2^8).

This transformation operates on the columns of the

State, treating each columns as a four term

polynomial the finite field GF(2
8
). Each columns

is multiplied modulo x
4
+1 with a fixed four-term

polynomial a(x) = {03}x
3
 + {01}x

2
 + {01}x + {02}

over the GF(2
8
). The MixColumns transformation

can be expressed as a matrix multiplication as

shown below:





























































c

c

c

c

c

c

c

c

s

s

s

s

s

s

s

s

,0

,0

,0

,0

'

,3

'

,2

'

,1

'

,0

02010103

03020101

01030201

01010302

 The MixColumns transformation replaces

the four bytes of the processed column with the

following values:

ccccc sssss ,3,2,1,0

'

,0)}03({)}02({ 

ccccc sssss ,3,2,1,0

'

,1)}03({)}02({ 

)}03({)}02({ ,3,2,1,0

'

,0 ccccc sssss 

)}02({)}03({ ,3,2,1,0

'

,1 ccccc sssss 

The corresponds to the multiplication of

polynomials in GF (2
8
) . The MixColumns

transformation is illustrated in Figure 4.5.This

transformation together with ShiftRows provide

substantial diffusion in the cipher meaning that the

result of the cipher depends on the cipher inputs in

a very complex way. In other words, in a cipher

with a good diffusion, a single bit change in the

plaintext will completely change the ciphertext in

an unpredictable manner.

a) SHIFTROWS - Processes the State by cyclically

shifting the last three rows of the State by different

offsets.

 b) SUBBYTES

 Uses S-box to perform a byte-by-byte

substitution of State

For example, if s1,1 ={53}, then the

substitution value would be determinedby the

intersection of the row with index „5‟ and the

column with index „3‟ in the below table This

would result in s‟1,1 having a value of {ed}.

c) INVERSE CIPHER

The Cipher transformations can be

inverted and the implemented in reverse order to

produce a straightforward Inverse Cipher for the

AES algorithm. The individual transformations

used in the Inverse Cipher -InvShiftRows,

InvSubBytes, InvMixColumns, and AddRoundKey

ISSN 23499842(Online), Volume 1, Special Issue 2(ICITET 15), March 2015

International Journal of Innovative Trends and Emerging Technologies

Paper ID # IC15061

process the State and are described in the following

subsections.

d) INVERSE SHIFTROWS TRANSFORMATION:

Inverse Shift Rows is the inverse of the ShiftRows

transformation.

The bytes in the last three rows of the

State are cyclically shifted over different numbers

of bytes (offsets). The first row, r = 0, is not

shifted. The bottom three rows are cyclically

shifted by Nb-shift(r, Nb) bytes, where the shift

value shift(r,Nb) depends on the row number.There

is no shift for the first column, second column is

left shifted once, second row is left shifted for two

times and the third row left is shifted for three

times

e) INVERSE SUB BYTES TRANSFORMATION:

InvSubBytes is the inverse of the byte substitution

transformation, in which the inverse S-box is

applied to each byte of the State. This is obtained

by applying the inverse of the affine transformation

followed by taking the multiplicative inverse in GF

(2
8
).

f) INVERSE MIX COLUMNS

TRANSFORMATION:

Inverse Mix Columns is the inverse of the Mix

Columns transformation. InvMixColumns operates

on the State column-by-column, treating each

column as a four-term polynomial. The columns

are considered as polynomials over GF (2
8
) and

multiplied with a fixed polynomial a
-

1
(x).TheMultiplication is done as shown

below.

g) INVERSE ADD ROUND KEY

TRANSFORMATION

AddRoundKey is its own inverse, since it only

involves an application of the XOR operation.

III. ROBUST SCAN TECHNIQUE

 For a long time, the Data Encryption

Standard (DES) was considered as a standard for

the symmetric key encryption. DES has a key

length of 56 bits. However, this key length is

currently considered small and can easily be

broken. For this reason, the National Institute of

Standards and Technology (NIST) opened a formal

call for algorithms in September 1997. A group of

fifteen AES candidate algorithms were announced

in August 1998. Next, all algorithms were subject

to assessment process performed by various groups

of cryptographic researchers all over the world. In

August 2000, NIST selected five algorithms: Mars,

RC6, Rijndael, Serpent and Twofish as the final

competitors.

 These algorithms were subject to further

analysis prior to the selection of the best algorithm

for the AES. Finally, on October 2, 2000, NIST

announced that the Rijndael algorithm was the

winner. Rijndael can be specified with key and

block sizes in any multiple of 32 bits, with a

minimum of 128 bits and a maximum of 256 bits.

Therefore, the problem of breaking the key

becomes more difficult [1]. In cryptography, the

AES is also known as Rijndael [2]. AES has a fixed

block size of 128 bits and a key size of 128, 192 or

256 bits.

i) SIDE CHANNEL ATTACKS

 Scan test has been widely adopted as a

default testing technique among most VLSI

designs, including crypto cores. Unfortunately,

these scan chains might be used as a “side channel”

to recover the secret keys from the hardware

implementations of cryptographic algorithms, for

example scan-based attacks on Data Encryption

Standard (DES), Advanced Encryption Standard

(AES), and Elliptic Curve Cryptography (ECC)

[1]–[3], respectively.

Fig 3.1. Normal Scan FF.

 In general, the existing scan-based side channel

attacks (SSCA) could be viewed as one kind of

differential cryptanalysis by using scan chains of

crypto cores. Unlike other known side channel

attacks, SSCA is much easier. It is because that in

SSCA, in addition to the primary outputs of the

crypto cores, a hacker could use scan chain to shift

out the intermediate contents during a

cryptographic operation. It was illustrated in [2]

that on average overall only 544 plaintexts are

required to discover the AES key by using SSCA,

which clearly shows the great potential threat of

scan-based side channel attack

ii) PREVIOUS IMPLEMENTATIONS OF THE

S-BOX

One of the most common and straight

forward implementation of the S-Box for the

FF 0

1

S

E

D

I

SI

C

K

D

O
S

O

ISSN 23499842(Online), Volume 1, Special Issue 2(ICITET 15), March 2015

International Journal of Innovative Trends and Emerging Technologies

Paper ID # IC15061

SubByte operation which was done in previous

work was to have the pre-computed values stored

in a ROM based lookup table. In this

implementation, all 256 values are stored in a ROM

and the input byte would be wired to the ROM‟s

address bus. However, this method suffers from an

unbreakable delay since ROMs have a fixed access

time for its read and write operation. [3]

Furthermore, such implementation is expensive in

terms of hardware. A more refined way of

implementing the S-Box is to use combinational

logic.

Such examples of work that implements

the S-Box using this method were [1], [3] and [5].

This S-Box has the advantage of having small area

occupancy, in addition to be capable of being

pipelined for increased performance in clock

frequency. The S-Box architecture discussed in this

paper is based on the combinational logic

implementation.

iii) THE SUBBYTES AND INVSUBBYTE

TRANSFORMATION

The Sub Bytes transformation is computed

by taking the multiplicative inverse in GF (28)

followed by an affine transformation. For its

reverse, the InvSubBytetransformation,the inverse

affine transformation is applied first prior to

computing the multiplicative inverse.The steps

involved for both transformation is shown below.

SubByte: Multiplicative Inversion in GF (28),

Affine Transformation

InvSubByte: Inv Affine Transformation,

Multiplicative Inversion in GF (28).

The AT and AT
-1

 are the Affine

Transformation and its inverse while the vector a is

the multiplicative inverse of the input byte from the

state array. From here, it is observed that both the

SubByte and the InvSubByte transformation

involve a multiplicative inversion operation. Thus,

both transformations may actually share the same

multiplicative inversion module in a combined

architecture. An example of such hardware

architecture is shown below. Switching between

SubByte and InvSubByte is just a matter of

changing the value of INV. INV is set to 0 for

SubByte while 1 is set when Inverse Sub Byte

operation is desired.

iv) S-BOX CONSTRUCTION

METHODOLOGY
This section illustrates the steps involved

in constructing the multiplicative inverse module

for the S-Box using composite field arithmetic.

Since both the SubByte and InvSubByte

transformation are similar other than their

operations which involve the Affine

Transformation and its inverse, therefore only the

implementation of the SubByte operation will be

discussed in this paper. The multiplicative inverse

computation will first be covered and the affine

transformation will then follow to complete the

methodology involved for constructing the S-Box

for the SubByte operation. For the InvSubByte

operation, the reader can reuse multiplicative

inversion module and combine it with the Inverse

Affine Transformation.

Sub byte transformation:

First multiplicative inversion of the eight bit value

is taken then affine transformation is done by

following matrix the affine transformation matrix.

Inverse sub byte:

After taking inverse affine transform the eight bit

subbytevalue is transformed into eight bit value by

undergoing multiplicative inversion .

 v) ROBUST SECURE SCAN
Due to the security and testability

requirements as mentioned above, a novel robust

secure scan-based test approach is proposed as a

countermeasure against scan-based differential

cryptanalysis.

Fig –3.2 Proposed RSFF.

When in normal function mode (SE==0)

SFF loads data from the logic through DI, and the

output to logic is DO. Because the additional

inverter and the XOR gate are inserted along the

scan path, they do not affect the timing of the

design. Thus in function mode, RSSF works like a

traditional scan flip flop. When in scan test mode,

we can observe from Fig. 1 that (3) during scan

shift operation, the content of FF is XOR ed with

SI to be shifted out to the next SFF and the inverted

scan-in data (SI) will be loaded into FF. Thus for

hackers, it becomes extremely complicated to

identify the relationship between the captured

response and the scan-out.

RSS design:

The basic idea of the proposed RSS design

is to encrypt the contents in scan chains during scan

operation, so as to reduce the controllability and

ISSN 23499842(Online), Volume 1, Special Issue 2(ICITET 15), March 2015

International Journal of Innovative Trends and Emerging Technologies

Paper ID # IC15061

observability of unintended users. By doing this, it

becomes more complicated for hackers to identify

the bit differences between pairs of related

plaintexts when they are encrypted under the same

key. One kind of the proposed RSS design is

shown in Fig. 1, in which the contents of two

neighboring SFFs are encoded during scan

operation from a security aspect.

 When compared with the traditional SFF,

an extra inverter and an XOR gate are introduced in

the RSS design. This simple logic could be used for

encryption during scan operations. Observe that the

proposed robust scan flip-flop (RSSF) has identical

pin outs when compared with the traditional scan

flip-flop as shown in Fig. 1, and is therefore fully

compatible with industry standard design tools

from a design perspective, when integrated into

current design flows it only requires the RSSF

added into the cell library.

vi) SECURITY AND IMPLEMENTATION

ANALYSIS

 In this section, security analysis and

implementation overhead are discussed to show the

advantages of the proposed secure test technique

over existing methods.

Security analysis:

Due to the avalanche effect of

cryptographic algorithms, there exist two kinds of

scan-based differential cryptanalysis, called as

constant based (CBA) and fixed hamming-distance-

based attack (FHDA). Here let us use AES as an

example cryptographic algorithm to explain these

two kinds of attacks. CBA takes advantages of the

fact that in encryption process, the contents of

some special registers are independent on the

inputted plaintext. For example, the round registers

in AES, without special protection, for each normal

inputs, in the first cycle they would be 0001, and

then 0010,… 1010.

By using several different plaintext inputs

and scanning out the contents at different times of

the cryptographic operation, these registers could

be easily identified. Then by setting the registers as

1010 (i.e., to indicate the round cycle is 10, the last

round for 128-bit AES), which is because in AES

the mix-column operation is bypassed in the last

round, it became much easier to discover the secret

keys. Such a kind of attack is called constant-based

attack. FHDA is another kind of scan-based attack

by counting the number of bit changes on relevant

plaintexts so as to discover the secret key, and refer

to [2] for more details on FHDA.

Reliable against attack:

When using the proposed RSS, it can be

easily configured that once the intermediate data of

CFFs passing the replaced RSSFs, they would be

encrypted and this makes it extremely difficult to

identify the positions of CFFs in the scan chain

from external. In addition, because the proposed

RSSFs deals with the scan-in and scan-out as well,

it is also difficult for hackers to set the CFFs to

desired states with no detailed knowledge of the

scan structure implementation.

We simply group the registers together in

the scan chain for each block, replace the last SFF

in the scan chain with RSSF, and then conduct

FHDA. Here we found that the two pairs of

plaintexts do not belong to any of the original four

pairs, which might mislead the hackers to wrong

keys.

vii) DESIGN HIERARCHY

The proposed AES128 hardware model is

a 3-level hierarchical design as shown in Figure 8.

The root module in the hierarchy is the

AES128_cipher_top. This module implements the

AES128 pseudo code displayed in Figure 2. It has

two 128-bit inputs for receiving the cipher key and

the plaintext. There is also a single bit input signal,

‘Ld’, which is used to indicate the availability of a

new set of plaintext or cipher key on the input

ports. The completion of the encryption process is

indicated by asserting the „done‟ single bit output.

 Fig -3.3 Design Hierarchy

A unique feature of the proposed design is

that the AES128_Key_Expand module is pipelined

with the AES128_cipher_top module. While the

AES128 cipher top module is performing an

iteration of the encryption. Transformations on the

State using the previously generate round keys, the

AES128 Key Expand produces the next round‟s set

of keys to be used by the root module in the next

encryption iteration.

IV. SIMULATION OUTPUT WITH

MASKING

A) During Scan Mode, When both the key in

encryption and decryption are same:

ISSN 23499842(Online), Volume 1, Special Issue 2(ICITET 15), March 2015

International Journal of Innovative Trends and Emerging Technologies

Paper ID # IC15061

B) During Scan Mode, When both the key in

encryption and decryption are different:

C) Total Power Dissipation with Masking Key:

V. CONCLUSION

 In this brief, we carried out

implementation of AES cryptographic algorithms

with scan based testing futures. It has been

previously demonstrated that scan chains

introduced for hardware testability open a back

door to potential attacks. Here, we propose a level

based masking and RSFF based flip flop masking

as a scan-protection scheme that provides testing

facilities both at production time and over the

course of the circuit‟s life. Compared to regular

scan tests, this technique has no impact on the

quality of the test or the model-based fault

diagnosis. Here we proved that RSFF based AES

will give better hardware complexity & power

optimization with considerable delay enhancement.

An accurate SFF-based analysis approach

was introduced for AES core with single and multi

FF characterizations. The proposed approach was

derived from the SFF method. The method avoids

the use of a large number of masking parameters to

minimize the required resources for area- and

power-efficient built-in testing applications.

Modelsim based pre simulation results of an AES

implementation showed the feasibility of the

approach. For a QUARTUS II based hardware

synthesis report proved the efficiency of proposed

method

REFERENCES

[1] M. Akkar and C. Giraud, “An Implementation

of DES and AES, Secure against Some Attacks,” In

Proc. of the Workshop on Cryptographic Hardware

and Embedded Systems (CHES2001), Paris,

France, pp. 315-325, May 2001.

[2]http://www.altera.com/products/software/produc

ts/quartus2/qts-index .html

[3] R. Anderson, E. Biham, and L. Knudsen,

“Serpent: A Proposal for the Advanced Encryption

Standard,” AES algorithm submission, June 1998.

[4] G. Bertoni, L. Breveglieri, I. Koren, P. Maistri,

and V. Piuri, “Error Analysis and Detection

Procedures for a Hardware Implementation of the

Advanced Encryption Standard,” IEEE Trans. on

Computers, vol. 52, no. 4, pp. 492-505, April 2003.

[5] G. Bertoni, L. Breveglieri, I. Koren, and P.

Maistri, “An efficient hardwarebased fault

diagnosis scheme for AES: performances and

cost,” In Proc. of the IEEE International

Symposium on Defect and Fault Tolerance in VLSI

Systems (DFT2004), Cannes, France, pp. 130-138,

Oct. 2004.

[6] D. Boneh, R. A. DeMillo, and R. J. Lipton, “On

the Importance of Eliminating Errors in

Cryptographic Computations,” Journal of

Cryptology, vol. 14, no. 2, pp. 101-119, 2001.

http://www.altera.com/products/software/products/quartus2/qts-index
http://www.altera.com/products/software/products/quartus2/qts-index
http://www.altera.com/products/software/products/quartus2/qts-index

