

 ISSN 23499842(Online), Volume 2, issue 1 March 2017

International Journal of Innovative Trends and Emerging Technologies

Paper ID # ICITET17011

A Literature Survey on Big Data
S.T.Lenin1, J.Sathishkumar2, S.Ramya3, D.Jeeva4

1,2,3,4 Assistant Professor, Department of Information Technology
Muthayammal Engineering College, Rasipuram, Tamilnadu

1e-mail:leninbutt2005@gmail.com

Abstract
Big data is the term for any collection of data sets so large and
complex that it becomes difficult to process using traditional
data processing applications. The challenges include analysis,
capture, search, sharing, storage, transfer, visualization, and
privacy violations. The trend to larger data sets is due to the
additional information derivable from analysis of a single large
set of related data, as compared to separate smaller sets with
the same total amount of data, allowing correlations to be
found to "spot business trends, prevent diseases, combat crime
and so on." Big data is difficult to work with using most
relational database management systems and desktop statistics
and visualization packages, requiring instead "massively
parallel software running on tens, hundreds, or even thousands
of servers". Big data "size" is a constantly moving target, as of
its ranging from a few dozen terabytes to many petabytes of
data. Big data environment is used to acquire, organize and
analyze the various types of data. There is an observation
about Map Reduce framework that framework generates large
amount of intermediate data. Therefore, as well as the tasks
finishes there is need of throwing that abundant data, because
MapReduce is unable to utilize them.

Index terms: Big Data.

1. Introduction
I. what is big data?
We create 2.5 quintillion bytes of data — so much that 90% of
the data in the world today has been created in the last two
years alone. This much amount of data comes from
everywhere: sensors used to gather climate information, posts
to social media sites, digital pictures and videos, purchase
transaction records, and cell phone GPS signals to name a
few. This huge amount of the data is known as “Big data”.
Big data is a buzzword, or catch-phrase, utilizes to describe a
massive volume of both structured and unstructured data that
is so huge that it's complicated to process using traditional
database and software techniques. In most enterprise scenarios
the data is too large or it moves too fast or it exceeds current
processing capacity. Big data has the potential to help
organizations to improve operations and make faster, more
intelligent decisions. Big Data, now a days this term becomes
common in IT industries. As there is a huge amount of data
lies in the industry but there is nothing before big data comes
into picture [3]. Big data is actually an evolving term that
describes any voluminous amount of structured, semi-
structured and unstructured data that has the potential to be
mined for information. Although big data doesn't refer to any
specific quantity, so this term is often used when speaking
about petabytes and exabytes of data. Big data is an all-
encompassing term for large collection of the data sets so this

huge and complex that it becomes difficult to operate them
using traditional data processing applications. When dealing
with larger datasets, organizations face difficulties in being
able to create, manipulate, and manage big data. Big data is
particularly a problem in business analytics because standard
tools and procedures are not designed to search and analyze
massive datasets.
 The challenges include analysis, capture, search,
sharing, storage, transfer, visualization, and privacy
violations. The trend to larger data sets is due to the additional
information derivable from analysis of a single large set of
related data, as compared to separate smaller sets with the
same total amount of data, allowing correlations to be found
to "spot business trends, prevent diseases, combat crime and
so on"[10].Scientists regularly encounter limitations due to
large data sets in many areas, including meteorology,
genomics, connections, complex physics simulations, and
biological and environmental research. The limitations also
affect Internet search, finance and business informatics. Data
sets grow in size in part because they are increasingly being
gathered by ubiquitous information-sensing mobile devices,
aerial sensory technologies (remote sensing), software logs,
cameras, microphones, radio-frequency identification (RFID)
readers, and wireless sensor networks. The world's
technological per-capita capacity to store information has
roughly doubled every 40 months since the 1980s of 2016,
every day 2.5 exabytes (2.5×1060) of data were created. The
challenge for large enterprises is determining who should own
big data initiatives that straddle the entire organization.
Big data defined as far back as 2001, industry analyst Doug
Laney (currently with Gartner) articulated the now
mainstream definition of big data as the three Vs of big data:
volume, velocity and variety .Big data can be characterized by
well-known 3Vs: the extreme volume of data, the wide variety
of types of data and the velocity at which the data must be
must processed. Although big data doesn't refer to any
specific quantity, the term is often used when speaking about
petabytes and exabytes of data, much of which cannot be
integrated easily. [10].

Fig. 1.1 3V’s factors of Big Data

Velocity. Data is streaming in at unprecedented speed and
must be dealt with in a timely manner. RFID tags, sensors and

 ISSN 23499842(Online), Volume 2, issue 1 March 2017

International Journal of Innovative Trends and Emerging Technologies

Paper ID # ICITET17011

smart metering are driving the need to deal with torrents of
data in near-real time. Reacting quickly enough to deal with
data velocity is a challenge for most organizations.fig.1.1
Variety. Data today comes in all types of formats. Structured,
numeric data in traditional databases. Information created
from line-of-business applications. Unstructured text
documents, email, video, audio, stock ticker data and financial
transactions. Managing, merging and governing different
varieties of data is something many organizations still grapple
with.fig.1.1
We consider two additional dimensions when thinking about
big data:
Variability. In addition to the increasing velocities and
varieties of data, data flows can be highly inconsistent with
periodic peaks. Is something trending in social media? Daily,
seasonal and event-triggered peak data loads can be
challenging to manage. Even more so with unstructured data
involved.
Complexity. Today's data comes from multiple sources. And
it is still an undertaking to link, match, cleanse and transform
data across systems. However, it is necessary to connect and
correlate relationships, hierarchies and multiple data linkages
or your data can quickly spiral out of control Data storage has
grown significantly, shifting make from analog to digital after
2000 fig.1.2

Fig. 1.2 Data storage growth graph

Big Data, the analysis of huge quantities of data to gain new
insight has become a ubiquitous phrase in recent years. As we
know that day by day the data is growing at a staggering rate.
One of the efficient well-known technologies that deal with
the Big Data is Hadoop [6].
2. Hadoop:
Hadoop was created by Doug Cutting and Mike Cafarella in
2005. Doug Cutting, who was working at Yahoo! at the time,
named it after his son's toy elephant. It was originally
developed to support distribution for the Nutch search engine
project. Hadoop is open- source software that enables reliable,
scalable, distributed computing on clusters of inexpensive
servers[1].
Hadoop is:
Reliable: The software is fault tolerant, it expects and handles
hardware and software failures
Scalable: Designed for massive scale of processors, memory,
and local attached storage
Distributed: Handles replication. Offers massively parallel
programming model, Map Reduce

Hadoop is an Open Source implementation of a large-scale
batch processing system. That uses the Map-Reduce
framework introduced by Google by leveraging the concept of
map and reduces functions that well known used in Functional
Programming. Although the Hadoop framework is written in
Java, it allows developers to deploy custom-written programs
coded in Java or any other language to process data in a
parallel fashion across hundreds or thousands of commodity
servers. It is optimized for contiguous read requests (streaming
reads), where processing includes of scanning all the data.
Depending on the complexity of the process and the volume of
data, response time can vary from minutes to hours. While
Hadoop can processes data fast, so its key advantage is its
massive scalability.

Hadoop is currently being used for index web
searches, email spam detection, recommendation engines,
prediction in financial services, genome manipulation in life
sciences, and for analysis of unstructured data such as log,
text, and clickstream. While many of these applications could
in fact be implemented in a relational database (RDBMS) fig
2.1, the main core of the Hadoop framework is functionally
different from an RDBMS. The following discusses some of
these differences Hadoop is particularly useful when:
Complex information processing is needed Unstructured data
needs to be turned into structured data Queries can’t be
reasonably expressed using SQL Heavily recursive algorithms
,Complex but parallelizable algorithms needed, such as geo-
spatial analysis or genome sequencing Machine learning
Data sets are too large to fit into database RAM, discs, or
require too many cores (10’s of TB up to PB)
Data value does not justify expense of constant real-time
availability, such as archives or special interest info, which can
be moved to Hadoop and remain available at lower cost.

 Results are not needed in real time
 Fault tolerance is critical
 Significant custom coding would be required to

handle job scheduling
Hadoop was inspired by Google's MapReduce, a software
framework in which an application is broken down into
numerous small parts. Any of these parts (also called
fragments or blocks) can be run on any node in the cluster.
Doug Cutting, Hadoop's creator, named the framework after
his child's stuffed toy elephant. The current Apache Hadoop

 ISSN 23499842(Online), Volume 2, issue 1 March 2017

International Journal of Innovative Trends and Emerging Technologies

Paper ID # ICITET17011

ecosystem consists of the Hadoop kernel, MapReduce, the
Hadoop distributed file system (HDFS) and a number of
related projects such as Apache Hive, HBase and Zookeeper.
The Hadoop framework is used by major players including
Google, Yahoo and IBM, largely for applications involving
search engines and advertising. The preferred operating
systems are Windows and Linux but Hadoop can also work
with BSD and OS X .
A distributed file system is a client/server-based application
that allows clients to access and process data stored on the
server as if it were on their own computer. A distributed file
system is a client/server-based application that allows clients
to access and process data stored on the server as if were on
their own computer. When a user accesses a file on the server,
the server sends the user a copy of the file, which is cached on
the user's computer while the data is being processed and is
then returned to the server. Ideally, a distributed file system
organizes file and directory services of individual servers into
a global directory in such a way that remote data access is not
location-specific but is identical from any client. All files are
accessible to all users of the global file system and
organization is hierarchical and directory-based [2].

Since more than one client may access the same data
simultaneously, the server must have a mechanism in place
(such as maintaining information about the times of access) to
organize updates so that the client always receives the most
current version of data and that data conflicts do not arise.
Distributed file systems typically use file or database
replication (distributing copies of data on multiple servers) to
protect against data access failures[4].Sun Microsystems'
Network File System (NFS)[21],Novell NetWare, Microsoft's
Distributed File System, and IBM/Transarc's DFS are some
examples of distributed file systems.
3. HDFS
The Hadoop Distributed File System (HDFS) is the file system
component of the Hadoop framework. HDFS is designed and
optimized to store data over a large amount of low-cost
hardware in a distributed fashion.

Fig.3.1 HDFS architecture

Name Node:

Name node is a type of the master node, which is
having the information that means meta data about the all

data node there is address (use to talk), free space, data they
store, active data node, passive data node, task tracker, job
tracker and many other configuration such as replication of
data [3].

The NameNode records all of the metadata,
attributes, and locations of files and data blocks in to the
DataNodes. The attributes it records are the things like file
permissions, file modification and access times, and
namespace, which is a hierarchy of files and directories. The
NameNode maps the namespace tree to file blocks in
DataNodes. When a client node wants to read a file in the
HDFS it first contacts the Namenode to receive the location of
the data blocks associated with that file

A NameNode stores information about the overall
system because it is the master of the HDFS with the
DataNodes being the slaves. It stores the image and journal
logs of the system. The image of the system is a list of blocks
and data for each file stored in the HDFS. The journal is just a
modification log of the image. The NameNode must always
store the most up to date image and journal. Basically, the
NameNode always knows where the data blocks and
replicates are for each file and it also knows where the free
blocks are in the system so it keeps track of where future files
can be written.
Data Node:
Data node is a type of slave node in the hadoop, which is used
to save the data and there is task tracker in data node which is
use to track on the ongoing job on the data node and the jobs
which coming from name node[3].
The DataNodes store the blocks and block replicas of the file
system. During startup each DataNode connects and performs
a handshake with the NameNode. The DataNode checks for
the accurate namespace ID, and if not found then the
DataNode automatically shuts down. New DataNodes can join
the cluster by simply registering with the NameNode and
receiving the namespace ID [27]. Each DataNode keeps track
of a block report for the blocks in its node. Each DataNode
sends its block report to the NameNode every hour so that the
NameNode always has an up to date view of where block
replicas are located in the cluster.During the normal operation
of the HDFS, each DataNode also sends a heartbeat to the
NameNode every ten minutes so that the NameNode knows
which Data Nodes are operating correctly and are available. If
after ten minutes the NameNode doesn’t receive a heartbeat
from a DataNode then the NameNode assumes that the
DataNode is lost and begins creating replicas of that
DataNode’s lost blocks on other DataNodes.

The nice thing about the HDFS architecture is that
the NameNode doesn’t have to reach out to the DataNodes, it
instead waits for the DataNodes to send their block reports
and heartbeats to it. The NameNode can receive thousands of
DataNode’s heartbeats every second and not adversely affect
other NameNode operations.

Apache Hadoop is an open-source software
framework for distributed storage and distributed processing
of Big Data on clusters of commodity hardware. Its Hadoop
Distributed File System (HDFS) splits files into large blocks
(default 64MB or 128MB) and distributes the blocks amongst

 ISSN 23499842(Online), Volume 2, issue 1 March 2017

International Journal of Innovative Trends and Emerging Technologies

Paper ID # ICITET17011

the nodes in the cluster. For processing the data, the Hadoop
Map/Reduce ships code (specifically Jar files) to the nodes
that have the required data and the nodes then process the data
in parallel. This approach takes advantage of data locality, in
contrast to conventional HPC architecture which usually relies
on a parallel file system (compute and data separated, but
connected with high-speed networking).
The base Apache Hadoop framework is composed of the
following modules:
Hadoop Common –
Contains libraries and utilities needed by other Hadoop
modules.
Hadoop Distributed File System (HDFS) –
A distributed file-system that stores data on commodity
machines, providing very high aggregate bandwidth across the
cluster.
Hadoop MapReduce –
A programming model for large scale data processing
All the modules in Hadoop are designed with a fundamental
assumption that hardware failures (of individual machines or
racks of machines) are common and thus should be
automatically handled in software by the framework.
Apache Hadoop's MapReduce and HDFS components
originally derived respectively from Google's MapReduce and
Google File System (GFS) papers."Hadoop" often refers not to
just the base Hadoop package but rather to the Hadoop
Ecosystem fig.3.2,which includes all of the additional software
packages that can be installed on top of or alongside Hadoop,
such as Apache Hive, Apache Pig and Apache Spark.

Fig 3.2 Hadoop Architecture

4. MAP REDUCE FRAMEWORK
Map Reduce is a software framework for distributed
processing of large data sets on computer clusters. It is first
developed by Google .Map Reduce is intended to facilitate and
simplify the processing of vast amounts of data in parallel on
large clusters of commodity hardware in a reliable, fault-
tolerant manner [4].
MapReduce is the key algorithm that the Hadoop MapReduce
engine uses to distribute work around a cluster. Typical

Hadoop cluster integrates MapReduce and HFDS layer. In
MapReduce layer job tracker assigns tasks to the task
tracker.Master node job tracker also assigns tasks to

Fig 4.1.Map Reduce Frame work

Master node contains -

 Job tracker node (Map Reduce layer)
 Task tracker node (MapReduce layer)
 Name node (HFDS layer)
 Data node (HFDS layer)

Multiple slave nodes contain -Task tracker node (MapReduce
layer) Data node (HFDS layer) MapReduce layer has job and
task tracker nodes HFDS layer has name and data nodes.
It monitors slave progress. It also re-executing failed
tasks .As well as single TaskTracker per slave execute the
tasks as directed by the master.Map reduce core functionality
is based on the Map phase and reduce phase. Code usually
written in Java-though it can be written in other languages
with the Hadoop Streaming API
A. Map Reduce core functionality(I):
In this functionality Map and Reduce pieces are playing vital
role.
I. Map step
In this Map phase the Master node takes large problem input
and slices it into smaller sub problems; distributes these to
worker nodes.Worker node may do this again; leads to a
multi-level tree structure .Worker processes smaller problem
and hands back to master.
A map transform is provided to transform an input data row of
key and value to an output key/value:

map(key1,value) -> list<key2,value2>
That is, for an input it returns a list containing zero or more
(key,value) pairs:
The output can be a different key from the input
The output can have multiple entries with the same key

II. Reduce step:
In this Reduce phase Master node takes the answers to the sub
problems and combines them in a predefined way to get the
output/answer to original problem.

 ISSN 23499842(Online), Volume 2, issue 1 March 2017

International Journal of Innovative Trends and Emerging Technologies

Paper ID # ICITET17011

A reduce transform is provided to take all values for a specific
key, and generate a new list of the reduced output.

reduce(key2, list<value2>) -> list<value3>
"Map" step: Each worker node applies the "map()" function
to the local data, and writes the output to a temporary storage.
A master node orchestrates that for redundant copies of input
data, only one is processed.
"Shuffle" step: Worker nodes redistribute data based on the
output keys (produced by the "map()" function), such that all
data belonging to one key is located on the same worker node
"Reduce" step: Worker nodes now process each group of
output data, per key, in parallel.
B. Map Reduce core functionality(II):
Data flow beyond the two key pieces (maps and reduces):
Input reader – divides input into appropriate size splits which
get assigned to a Map function.
Map function – maps file data to smaller, intermediate <key,
value> pairs
Partition function – finds the correct reducer: given the key
and number of reducers, returns the desired Reduce node-
Compare function – input for Reduce is pulled from the Map
intermediate output and sorted according to this compare
function -Reduce function – takes intermediate values and
reduces to a smaller solution handed back to the framework
Output writer – writes file output.
C.Map Reduce core functionality(III):

MapReduce operates exclusively on <key, value> pairs
Job Input: <key, value> pairs

Conceivably of different types Key and value classes have to
be serializable by the framework. Default serialization requires
keys and values to implement Writable Key classes must
facilitate sorting by the framework.

5. PIG

Pig was initially developed at Yahoo! to allow people
using Hadoop® to focus more on analyzing large data sets
and spend less time having to write mapper and reducer
programs. Like actual pigs, which eat almost anything, the Pig
programming language is designed to handle any kind of
data—hence the name! Stay on top of all the changes
including, Hadoop-based analytics, streaming analytics,
warehousing (including BigSQL), data asset discovery,
integration, and governance.
Pig is made up of two components: the first is the language
itself, which is called PigLatin (people naming various
Hadoop projects do tend to have a sense of humor associated
with their naming conventions), and the second is a runtime
environment where PigLatin programs are executed. Think of
the relationship between a Java Virtual Machine (JVM) and a
Java application. In this section, we’ll just refer to the whole
entity as Pig. Let’s first look at the programming language
itself so that you can see how it’s significantly easier than
having to write mapper and reducer programs.

1. The first step in a Pig program is to LOAD the data
you want to manipulate from HDFS.

2. Then you run the data through a set of
transformations (which, under the covers, are
translated into a set of mapper and reducer tasks).

3. Finally, you DUMP the data to the screen or you

STORE the results in a file somewhere.
LOAD: As is the case with all the Hadoop features, the objects
that are being worked on by Hadoop are stored in HDFS. In
order for a Pig program to access this data, the program must
first tell Pig what file (or files) it will use, and that’s done
through the LOAD 'data_file' command (where 'data_file'
specifies either an HDFS file or directory).

If a directory is specified, all the files in that
directory will be loaded into the program. If the data is stored
in a file format that is not natively accessible to Pig, you can
optionally add the USING function to the LOAD statement to
specify a user-defined function that can read in and interpret
the data.
TRANSFORM: The transformation logic is where all the data
manipulation happens. Here you can FILTER out rows that
are not of interest, JOIN two sets of data files, GROUP data to
build aggregations, ORDER results, and much more.
DUMP and STORE: If you don’t specify the DUMP or
STORE command, the results of a Pig program are not
generated. You would typically use the DUMP command,
which sends the output to the screen, when you are debugging
your Pig programs. When you go into production, you simply
change the DUMP call to a STORE call so that any results
from running your programs are stored in a file for further
processing or analysis. Note that you can use the DUMP
command anywhere in your program to dump intermediate
result sets to the screen, which is very useful for debugging
purposes.

6. HIVE
Apache Hive is a data warehouse infrastructure built on top of
Hadoop for providing data summarization, query, and analysis.
While initially developed by Facebook, Apache Hive is now
used and developed by other companies such as Netflix.
Amazon maintains a software fork of Apache Hive that is
included in Amazon Elastic MapReduce on Amazon Web
Services fig.3.2.

Apache Hive supports analysis of large datasets stored in
Hadoop's HDFS and compatible file systems such as Amazon
S3 filesystem. It provides an SQL-like language called
HiveQL with schema on read and transparently converts
queries to map/reduce, Apache Tez and in the future Spark
jobs. All three execution engines can run in Hadoop YARN.
To accelerate queries, it provides indexes, including bitmap
indexes. By default, Hive stores metadata in an embedded
Apache Derby database and other client/server databases like
MySQL can optionally be used. Currently, there are four file
formats supported in Hive, which are TEXTFILE
SEQUENCEFILE, ORC and RCFILE.
Other features of Hive include:

Indexing to provide acceleration, index type including
compaction and Bitmap index as of 0.10, more index types are
planned. Different storage types such as plain text, RCFile,
HBase, ORC, and others. Metadata storage in an RDBMS,
significantly reducing the time to perform semantic checks
during query execution. Operating on compressed data stored
into Hadoop ecosystem, algorithm including gzip, bzip2,
snappy, etc.

 ISSN 23499842(Online), Volume 2, issue 1 March 2017

International Journal of Innovative Trends and Emerging Technologies

Paper ID # ICITET17011

Built-in user defined functions (UDFs) to manipulate dates,
strings, and other data-mining tools. Hive supports extending
the UDF set to handle use-cases not supported by built-in
functions. SQL-like queries (HiveQL), which are implicitly
converted into MapReduce jobs.
Internally, a compiler translates HiveQL statements into a
directed acyclic graph of MapReduce jobs, which are
submitted to Hadoop for execution.
Although Pig can be quite a powerful and simple language to
use, the downside is that it’s something new to learn and
master. Some folks at Facebook developed a runtime
Hadoop® support structure that allows anyone who is already
fluent with SQL (which is commonplace for relational data-
base developers) to leverage the Hadoop platform right out of
the gate.Their creation, called Hive, allows SQL developers to
write Hive Query Language (HQL) statements that are similar
to standard SQL statements; now you should be aware that
HQL is limited in the commands it understands, but it is still
pretty useful. HQL statements are broken down by the Hive
service into MapReduce jobs and executed acros a Hadoop
cluster. For anyone with a SQL or relational database
background, this section will look very familiar to you. As
with any database management system (DBMS), you can run
your Hive queries in many ways. You can run them from a
command line interface (known as the Hive shell), from a Java
Database Connectivity (JDBC) or Open Database Connectivity
(ODBC) application leveraging the Hive JDBC/ODBC
drivers, or from what is called a Hive Thrift Client. The Hive
Thrift Client is much like any database client that gets installed
on a user’s client machine (or in a middle tier of three-tier
architecture): it communicates with the Hive services running
on the server. You can use the Hive Thrift Client within
applications written in C++, Java, PHP, Python, or Ruby
(much like you can use these client-side languages with
embedded SQL to access a database such as DB2 or Informix).
Hive looks very much like traditional database code with SQL
access. However, because Hive is based on Hadoop and
MapReduce operations, there are several key differences. The
first is that Hadoop is intended for long sequential scans, and
because Hive is based on Hadoop, you can expect queries to
have a very high latency (many minutes). This means that
Hive would not be appropriate for applications that need very
fast response times, as you would expect with a database such
as DB2. Finally, Hive is read-based and therefore not
appropriate for transaction processing that typically involves a
high percentage of write operations.

7. HBASE
Apache HBase began as a project by the company Powerset
out of a need to process massive amounts of data for the
purposes of natural language search. It is now a top-level
Apache project fig.3.2.Facebook elected to implement its new
messaging platform using HBase in November 2010. HBase is
a column -oriented database management system that runs on
top of HDFS. It is well suited for sparse data sets, which are
common in many big data use cases. Unlike relational
database systems, HBase does not support a structured query
language like SQL; in fact, HBase isn’t a relational data store
at all. HBase applications are written in Java much like a

typical MapReduce application. HBase does support writing
applications in Avro, REST, and Thrift.

An HBase system comprises a set of tables. Each table
contains rows and columns, much like a traditional database.
Each table must have an element defined as a Primary Key,
and all access attempts to HBase tables must use this Primary
Key. An HBase column represents an attribute of an object for
example, if the table is storing diagnostic logs from servers in
your environment, where each row might be a log record, a
typical column in such a table would be the timestamp of
when the log record was written, or perhaps the server name
where the record originated. In fact, HBase allows for many
attributes to be grouped together into what are known as
column families, such that the elements of a column family are
all stored together. This is different from a row-oriented
relational database, where all the columns of a given row are
stored together. With HBase you must predefine the table
schema and specify the column families. However, it’s very
flexible in that new columns can be added to families at any
time, making the schema flexible and therefore able to adapt to
changing application requirements.
Just as HDFS has a NameNode and slave nodes, and
MapReduce has JobTracker and TaskTracker slaves, HBase is
built on similar concepts. In HBase a master node manages the
cluster and region servers store portions of the tables and
perform the work on the data. In the same way HDFS has
some enterprise concerns due to the availability of the
NameNode (among other areas that can be “hardened” for true
enterprise deployments by InfoSphere BigInsights), HBase is
also sensitive to the loss of its master node.

8. Conclusion
Hadoop MapReduce is a large scale, open source software
framework dedicated to scalable, distributed, data-intensive
computing. The framework breaks up large data into smaller
parallelizable chunks and handles scheduling
▫ Maps each piece to an intermediate value
▫ Reduces intermediate values to a solution
▫ User-specified partition and combiner options

▫ Fault tolerant, reliable, and supports thousands of
nodes and petabytes of data

▫ If you can rewrite algorithms into Maps and
Reduces, and your problem can be broken up into
small pieces solvable in parallel, then Hadoop’s
MapReduce is the way to go for a distributed
problem solving approach to large datasets

▫ Tried and tested in production
▫ Many implementation options

We can present the design and evaluation of a data aware
cache framework that requires minimum change to the
original MapReduce programming model for provisioning
incremental processing for Big data applications using the
MapReduce model.

9. Future analysis:
Usually it is observed that the M a p R e d u c e framework
generates a large amount of intermediate data. Such abundant
information is thrown away after the tasks finish, because

 ISSN 23499842(Online), Volume 2, issue 1 March 2017

International Journal of Innovative Trends and Emerging Technologies

Paper ID # ICITET17011

MapReduce is unable to utilize them.Therefore, we propose
Dache, a data-aware cache framework for big-data
applications then its tasks submit their intermediate results to
the cache manager. The task queries the cache manager before
executing the actual computing work. A novel cache
description scheme and a cache request and reply protocol are
designed.

 10. References
[1] Dhole Poonam B, Gunjal Baisa L, “Survey Paper on Traditional Hadoop

and Pipelined Map Reduce” International Journal of Computational
Engineering Research||Vol, 03||Issue, 12||

[2] Nilam Kadale, U. A. Mande, “Survey of Task Scheduling Method for
Mapreduce Framework in Hadoop” International Journal of Applied
Information Systems (IJAIS) – ISSN : 2249-0868 Foundation of
Computer Science FCS, New York, USA 2nd National Conference
on Innovative Paradigms in Engineering & Technology (NCIPET 2013)
– www.ijais.org

[3] Suman Arora, Dr.Madhu Goel, “Survey Paper on Scheduling in
Hadoop” International Journal of Advanced Research in Computer
Science and Software Engineering, Volume 4, Issue 5, May 20

[4] Wang, F. et al. Hadoop High Availability through Metadata Replication.
ACM (2009).

[5] B.Thirumala Rao, Dr. L.S.S.Reddy, “Survey on Improved Scheduling in
Hadoop MapReduce in Cloud Environments”, International Journal of
Computer Applications (0975 – 8887) Volume 34– No.9, November 2011

[6] Amogh Pramod Kulkarni, Mahesh Khandewal, “Survey on Hadoop and
Introduction to YARN”, International Journal of Emerging Technology
and Advanced Engineering Website: www.ijetae.com (ISSN 2250-2459,
ISO 9001:2008 Certified Journal, Volume 4, Issue 5, May 20)

[7] Vishal S Patil, Pravin D. Soni, “HADOOP SKELETON & FAULT
TOLERANCE IN HADOOP CLUSTERS”, International Journal of
Application or Innovation in Engineering & Management
(IJAIEM)Volume 2, Issue 2, February 2013 ISSN 2319 - 4847

[8] Sanjay Rathe, “Big Data and Hadoop with components like Flume, Pig,
Hive and Jaql” International Conference on Cloud, Big Data and Trust
2013, Nov 13-15, RGPV

[9] Yaxiong Zhao, Jie Wu and Cong Liu, “Dache: A Data Aware
Caching for Big-Data Applications Using the MapReduce
Framework”,TSINGHUA SCIENCE AND TECHNOLOGY ISSN
1007-02 05/10 pp39-50 Volume 19, Number 1, February20

[10] Parmeshwari P. Sabnis, Chaitali A.Laulkar , “SURVEY OF
MAPREDUCE OPTIMIZATION METHODS”, ISSN (Print): 2319-2526,
Volume -3, Issue -1, 20

[11] Puneet Singh Duggal ,Sanchita Paul ,“ Big Data Analysis:
Challenges and Solutions”, International Conference on Cloud, Big Data
and Trust 2013, Nov 13-15, RGPV Chen He,Ying Lu,David Swanson,
“Matchmaking: A New MapReduce Scheduling Technique”, EECS
Department, University of California, Berkeley, Tech. Rep.,April 2009 .

