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Abstract  
Big data is the term for any collection of data sets so large and 
complex that it becomes difficult to process using traditional 
data processing applications. The challenges include analysis, 
capture, search, sharing, storage, transfer, visualization, and 
privacy violations. The trend to larger data sets is due to the 
additional information derivable from analysis of a single large 
set of related data, as compared to separate smaller sets with 
the same total amount of data, allowing correlations to be 
found to "spot business trends, prevent diseases, combat crime 
and so on." Big data is difficult to work with using most 
relational database management systems and desktop statistics 
and visualization packages, requiring instead "massively 
parallel software running on tens, hundreds, or even thousands 
of servers". Big data "size" is a constantly moving target, as of 
its ranging from a few dozen terabytes to many petabytes of 
data. Big data environment is used to acquire, organize and 
analyze the various types of data. There is an observation 
about Map Reduce framework that framework generates large 
amount of intermediate data. Therefore, as well as the tasks 
finishes there is need of throwing that abundant data, because 
MapReduce is unable to utilize them.   
 
Index terms: Big Data. 
 
1. Introduction  
I. what is big data? 
We create 2.5 quintillion bytes of data — so much that 90% of 
the data in the world today has been created in the last two 
years alone. This much amount of data comes from 
everywhere: sensors used to gather climate information, posts 
to social media sites, digital pictures and videos, purchase 
transaction records, and cell phone GPS signals to name a 
few. This huge amount of the data is known as “Big data”. 
Big data is a buzzword, or catch-phrase, utilizes to describe a 
massive volume of both structured and unstructured data that 
is so huge that it's complicated to process using traditional 
database and software techniques. In most enterprise scenarios 
the data is too large or it moves too fast or it exceeds current 
processing capacity. Big data has the potential to help 
organizations to improve operations and make faster, more 
intelligent decisions. Big Data, now a days this term becomes 
common in IT industries. As there is a huge amount of data 
lies in the industry but there is nothing before big data comes 
into picture [3]. Big data is actually an evolving term that 
describes any voluminous amount of structured, semi-
structured and unstructured data that has the potential to be 
mined for information. Although big data doesn't refer to any 
specific quantity, so this term is often used when speaking 
about petabytes and exabytes of data. Big data is an all-
encompassing term for large collection of the data sets so this 

huge and complex that it becomes difficult to operate them 
using traditional data processing applications. When dealing 
with larger datasets, organizations face difficulties in being 
able to create, manipulate, and manage big data. Big data is 
particularly a problem in business analytics because standard 
tools and procedures are not designed to search and analyze 
massive datasets. 
          The challenges include analysis, capture, search, 
sharing, storage, transfer, visualization, and privacy 
violations. The trend to larger data sets is due to the additional 
information derivable from analysis of a single large set of 
related data, as compared to separate smaller sets with the 
same total amount of data, allowing correlations to be found 
to "spot business trends, prevent diseases, combat crime and 
so on"[10].Scientists regularly encounter limitations due to 
large data sets in many areas, including meteorology, 
genomics, connections, complex physics simulations, and 
biological and environmental research. The limitations also 
affect Internet search, finance and business informatics. Data 
sets grow in size in part because they are increasingly being 
gathered by ubiquitous information-sensing mobile devices, 
aerial sensory technologies (remote sensing), software logs, 
cameras, microphones, radio-frequency identification (RFID) 
readers, and wireless sensor networks. The world's 
technological per-capita capacity to store information has 
roughly doubled every 40 months since the 1980s of 2016, 
every day 2.5 exabytes (2.5×1060) of data were created. The 
challenge for large enterprises is determining who should own 
big data initiatives that straddle the entire organization. 
Big data defined as far back as 2001, industry analyst Doug 
Laney (currently with Gartner) articulated the now 
mainstream definition of big data as the three Vs of big data: 
volume, velocity and variety .Big data can be characterized by 
well-known 3Vs: the extreme volume of data, the wide variety 
of types of data and the velocity at which the data must be 
must processed. Although big data doesn't refer to any 
specific quantity, the term is often used when speaking about 
petabytes and exabytes of data, much of which cannot be 
integrated easily. [10]. 

 
Fig. 1.1 3V’s factors of Big Data 

Velocity. Data is streaming in at unprecedented speed and 
must be dealt with in a timely manner. RFID tags, sensors and 
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smart metering are driving the need to deal with torrents of 
data in near-real time. Reacting quickly enough to deal with 
data velocity is a challenge for most organizations.fig.1.1 
Variety. Data today comes in all types of formats. Structured, 
numeric data in traditional databases. Information created 
from line-of-business applications. Unstructured text 
documents, email, video, audio, stock ticker data and financial 
transactions. Managing, merging and governing different 
varieties of data is something many organizations still grapple 
with.fig.1.1 
We consider two additional dimensions when thinking about 
big data:  
Variability. In addition to the increasing velocities and 
varieties of data, data flows can be highly inconsistent with 
periodic peaks. Is something trending in social media? Daily, 
seasonal and event-triggered peak data loads can be 
challenging to manage. Even more so with unstructured data 
involved.   
Complexity. Today's data comes from multiple sources. And 
it is still an undertaking to link, match, cleanse and transform 
data across systems. However, it is necessary to connect and 
correlate relationships, hierarchies and multiple data linkages 
or your data can quickly spiral out of control Data storage has 
grown significantly, shifting make from analog to digital after 
2000 fig.1.2 

 
Fig. 1.2 Data storage growth graph 

Big Data, the analysis of huge quantities of data to gain new 
insight has become a ubiquitous phrase in recent years. As we 
know that day by day the data is growing at a staggering rate. 
One of the efficient well-known technologies that deal with 
the Big Data is Hadoop [6]. 
2. Hadoop: 
Hadoop was created by Doug Cutting and Mike Cafarella in 
2005. Doug Cutting, who was working at Yahoo! at the time, 
named it after his son's toy elephant. It was originally 
developed to support distribution for the Nutch search engine 
project. Hadoop is open- source software that enables reliable, 
scalable, distributed computing on clusters of inexpensive 
servers[1].  
Hadoop is:  
Reliable: The software is fault tolerant, it expects and handles 
hardware and software failures   
Scalable: Designed for massive scale of processors, memory, 
and local attached storage  
Distributed: Handles replication. Offers massively parallel 
programming model, Map Reduce 
 

 
Hadoop is an Open Source implementation of a large-scale 
batch processing system. That uses the Map-Reduce 
framework introduced by Google by leveraging the concept of 
map and reduces functions that well known used in Functional 
Programming. Although the Hadoop framework is written in 
Java, it allows developers to deploy custom-written programs 
coded in Java or any other language to process data in a 
parallel fashion across hundreds or thousands of commodity 
servers. It is optimized for contiguous read requests (streaming 
reads), where processing includes of scanning all the data. 
Depending on the complexity of the process and the volume of 
data, response time can vary from minutes to hours. While 
Hadoop can processes data fast, so its key advantage is its 
massive scalability. 

Hadoop is currently being used for index web 
searches, email spam detection, recommendation engines, 
prediction in financial services, genome manipulation in life 
sciences, and for analysis of unstructured data such as log, 
text, and clickstream. While many of these applications could 
in fact be implemented in a relational database (RDBMS) fig 
2.1, the main core of the Hadoop framework is functionally 
different from an RDBMS. The following discusses some of 
these differences Hadoop is particularly useful when: 
Complex information processing is needed Unstructured data 
needs to be turned into structured data Queries can’t be 
reasonably expressed using SQL Heavily recursive algorithms 
,Complex but parallelizable algorithms needed, such as geo-
spatial analysis or genome sequencing Machine learning   
Data sets are too large to fit into database RAM, discs, or 
require too many cores (10’s of TB up to PB)  
Data value does not justify expense of constant real-time 
availability, such as archives or special interest info, which can 
be moved to Hadoop and remain available at lower cost. 

 Results are not needed in real time  
 Fault tolerance is critical   
 Significant custom coding would be required to 

handle job scheduling 
Hadoop was inspired by Google's MapReduce, a software 
framework in which an application is broken down into 
numerous small parts. Any of these parts (also called 
fragments or blocks) can be run on any node in the cluster. 
Doug Cutting, Hadoop's creator, named the framework after 
his child's stuffed toy elephant. The current Apache Hadoop 
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ecosystem consists of the Hadoop kernel, MapReduce, the 
Hadoop distributed file system (HDFS) and a number of 
related projects such as Apache Hive, HBase and Zookeeper. 
The Hadoop framework is used by major players including 
Google, Yahoo and IBM, largely for applications involving 
search engines and advertising. The preferred operating 
systems are Windows and Linux but Hadoop can also work 
with BSD and OS X . 
A distributed file system is a client/server-based application 
that allows clients to access and process data stored on the 
server as if it were on their own computer. A distributed file 
system is a client/server-based application that allows clients 
to access and process data stored on the server as if were on 
their own computer. When a user accesses a file on the server, 
the server sends the user a copy of the file, which is cached on 
the user's computer while the data is being processed and is 
then returned to the server. Ideally, a distributed file system 
organizes file and directory services of individual servers into 
a global directory in such a way that remote data access is not 
location-specific but is identical from any client. All files are 
accessible to all users of the global file system and 
organization is hierarchical and directory-based [2]. 

Since more than one client may access the same data 
simultaneously, the server must have a mechanism in place 
(such as maintaining information about the times of access) to 
organize updates so that the client always receives the most 
current version of data and that data conflicts do not arise. 
Distributed file systems typically use file or database 
replication (distributing copies of data on multiple servers) to 
protect against data access failures[4].Sun Microsystems' 
Network File System (NFS)[21],Novell NetWare, Microsoft's 
Distributed File System, and IBM/Transarc's DFS are some 
examples of distributed file systems. 
3. HDFS 
The Hadoop Distributed File System (HDFS) is the file system 
component of the Hadoop framework. HDFS is designed and 
optimized to store data over a large amount of low-cost 
hardware in a distributed fashion. 
 

 
 

Fig.3.1 HDFS architecture 
 
Name Node: 

Name node is a type of the master node, which is 
having the information that means meta data about the all 

data node there is address (use to talk), free space, data they 
store, active data node, passive data node, task tracker, job 
tracker and many other configuration such as replication of 
data [3]. 

The NameNode records all of the metadata, 
attributes, and locations of files and data blocks in to the 
DataNodes. The attributes it records are the things like file 
permissions, file modification and access times, and 
namespace, which is a hierarchy of files and directories. The 
NameNode maps the namespace tree to file blocks in 
DataNodes. When a client node wants to read a file in the 
HDFS it first contacts the Namenode to receive the location of 
the data blocks associated with that file  

A NameNode stores information about the overall 
system because it is the master of the HDFS with the 
DataNodes being the slaves. It stores the image and journal 
logs of the system. The image of the system is a list of blocks 
and data for each file stored in the HDFS. The journal is just a 
modification log of the image. The NameNode must always 
store the most up to date image and journal. Basically, the 
NameNode always knows where the data blocks and 
replicates are for each file and it also knows where the free 
blocks are in the system so it keeps track of where future files 
can be written. 
Data Node:  
Data node is a type of slave node in the hadoop, which is used 
to save the data and there is task tracker in data node which is 
use to track on the ongoing job on the data node and the jobs 
which coming from name node[3].  
The DataNodes store the blocks and block replicas of the file 
system. During startup each DataNode connects and performs 
a handshake with the NameNode. The DataNode checks for 
the accurate namespace ID, and if not found then the 
DataNode automatically shuts down. New DataNodes can join 
the cluster by simply registering with the NameNode and 
receiving the namespace ID [27]. Each DataNode keeps track 
of a block report for the blocks in its node. Each DataNode 
sends its block report to the NameNode every hour so that the 
NameNode always has an up to date view of where block 
replicas are located in the cluster.During the normal operation 
of the HDFS, each DataNode also sends a heartbeat to the 
NameNode every ten minutes so that the NameNode knows 
which Data Nodes are operating correctly and are available. If 
after ten minutes the NameNode doesn’t receive a heartbeat 
from a DataNode then the NameNode assumes that the 
DataNode is lost and begins creating replicas of that 
DataNode’s lost blocks on other DataNodes. 
 

The nice thing about the HDFS architecture is that 
the NameNode doesn’t have to reach out to the DataNodes, it 
instead waits for the DataNodes to send their block reports 
and heartbeats to it. The NameNode can receive thousands of 
DataNode’s heartbeats every second and not adversely affect 
other NameNode operations.  
 

Apache Hadoop is an open-source software 
framework for distributed storage and distributed processing 
of Big Data on clusters of commodity hardware. Its Hadoop 
Distributed File System (HDFS) splits files into large blocks 
(default 64MB or 128MB) and distributes the blocks amongst 
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the nodes in the cluster. For processing the data, the Hadoop 
Map/Reduce ships code (specifically Jar files) to the nodes 
that have the required data and the nodes then process the data 
in parallel. This approach takes advantage of data locality, in 
contrast to conventional HPC architecture which usually relies 
on a parallel file system (compute and data separated, but 
connected with high-speed networking). 
The base Apache Hadoop framework is composed of the 
following modules:  
Hadoop Common – 
Contains libraries and utilities needed by other Hadoop 
modules.  
Hadoop Distributed File System (HDFS) –  
A distributed file-system that stores data on commodity 
machines, providing very high aggregate bandwidth across the 
cluster.  
Hadoop MapReduce –  
A programming model for large scale data processing 
All the modules in Hadoop are designed with a fundamental 
assumption that hardware failures (of individual machines or 
racks of machines) are common and thus should be 
automatically handled in software by the framework. 
Apache Hadoop's MapReduce and HDFS components 
originally derived respectively from Google's MapReduce and 
Google File System (GFS) papers."Hadoop" often refers not to 
just the base Hadoop package but rather to the Hadoop 
Ecosystem fig.3.2,which includes all of the additional software 
packages that can be installed on top of or alongside Hadoop, 
such as Apache Hive, Apache Pig and Apache Spark. 
 

 
Fig 3.2 Hadoop Architecture 

 

4. MAP REDUCE FRAMEWORK 
Map Reduce is a software framework for distributed 
processing of large data sets on computer clusters. It is first 
developed by Google .Map Reduce is intended to facilitate and 
simplify the processing of vast amounts of data in parallel on 
large clusters of commodity hardware in a reliable, fault-
tolerant manner [4]. 
MapReduce is the key algorithm that the Hadoop MapReduce 
engine uses to distribute work around a cluster. Typical 

Hadoop cluster integrates MapReduce and HFDS layer. In 
MapReduce layer job tracker assigns tasks to the task 
tracker.Master node job tracker also assigns tasks to 
 

 
Fig 4.1.Map Reduce Frame work 

 
Master node contains - 

 Job tracker node (Map Reduce layer)  
 Task tracker node (MapReduce layer)  
 Name node (HFDS layer)  
 Data node (HFDS layer)  

Multiple slave nodes contain -Task tracker node (MapReduce 
layer) Data node (HFDS layer) MapReduce layer has job and 
task tracker nodes HFDS layer has name and data nodes. 
It monitors slave progress. It also re-executing failed 
tasks .As well as single TaskTracker per slave execute the 
tasks as directed by the master.Map reduce core functionality 
is based on the Map phase and reduce phase. Code usually 
written in Java-though it can be written in other languages 
with the Hadoop Streaming API 
A. Map Reduce core functionality(I):  
In this functionality Map and Reduce pieces are playing vital 
role. 
I. Map step  
In this Map phase the Master node takes large problem input 
and slices it into smaller sub problems; distributes these to 
worker nodes.Worker node may do this again; leads to a 
multi-level tree structure .Worker processes smaller problem 
and hands back to master. 
A map transform is provided to transform an input data row of 
key and value to an output key/value: 

map(key1,value) -> list<key2,value2>  
That is, for an input it returns a list containing zero or more 
(key,value) pairs: 
The output can be a different key from the input   
The output can have multiple entries with the same key  
 
II. Reduce step:  
In this Reduce phase Master node takes the answers to the sub 
problems and combines them in a predefined way to get the 
output/answer to original problem. 
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A reduce transform is provided to take all values for a specific 
key, and generate a new list of the reduced output. 

reduce(key2, list<value2>) -> list<value3>  
"Map" step: Each worker node applies the "map()" function 
to the local data, and writes the output to a temporary storage. 
A master node orchestrates that for redundant copies of input 
data, only one is processed.  
"Shuffle" step: Worker nodes redistribute data based on the 
output keys (produced by the "map()" function), such that all 
data belonging to one key is located on the same worker node  
"Reduce" step: Worker nodes now process each group of 
output data, per key, in parallel.  
B. Map Reduce core functionality(II):  
Data flow beyond the two key pieces (maps and reduces): 
Input reader – divides input into appropriate size splits which 
get assigned to a Map function. 
Map function – maps file data to smaller, intermediate <key, 
value> pairs  
Partition function – finds the correct reducer: given the key 
and number of reducers, returns the desired Reduce node- 
Compare function – input for Reduce is pulled from the Map 
intermediate output and sorted according to this compare 
function  -Reduce function – takes intermediate values and 
reduces to a smaller solution handed back to the framework 
Output writer – writes file output. 
C.Map Reduce core functionality(III):  

MapReduce operates exclusively on <key, value> pairs         
Job Input: <key, value> pairs 

Conceivably of different types Key and value classes have to 
be serializable by the framework. Default serialization requires 
keys and values to implement Writable Key classes must 
facilitate sorting by the framework.  
 
5. PIG 

Pig was initially developed at Yahoo! to allow people 
using Hadoop® to focus more on analyzing large data sets 
and spend less time having to write mapper and reducer 
programs. Like actual pigs, which eat almost anything, the Pig 
programming language is designed to handle any kind of 
data—hence the name! Stay on top of all the changes 
including, Hadoop-based analytics, streaming analytics, 
warehousing (including BigSQL), data asset discovery, 
integration, and governance.  
Pig is made up of two components: the first is the language 
itself, which is called PigLatin (people naming various 
Hadoop projects do tend to have a sense of humor associated 
with their naming conventions), and the second is a runtime 
environment where PigLatin programs are executed. Think of 
the relationship between a Java Virtual Machine (JVM) and a 
Java application. In this section, we’ll just refer to the whole 
entity as Pig. Let’s first look at the programming language 
itself so that you can see how it’s significantly easier than 
having to write mapper and reducer programs. 

1. The first step in a Pig program is to LOAD the data 
you want to manipulate from HDFS.   

2. Then you run the data through a set of 
transformations (which, under the covers, are 
translated into a set of mapper and reducer tasks).  

3. Finally, you DUMP the data to the screen or you 

STORE the results in a file somewhere. 
LOAD: As is the case with all the Hadoop features, the objects 
that are being worked on by Hadoop are stored in HDFS. In 
order for a Pig program to access this data, the program must 
first tell Pig what file (or files) it will use, and that’s done 
through the LOAD 'data_file' command (where 'data_file' 
specifies either an HDFS file or directory).  

If a directory is specified, all the files in that 
directory will be loaded into the program. If the data is stored 
in a file format that is not natively accessible to Pig, you can 
optionally add the USING function to the LOAD statement to 
specify a user-defined function that can read in and interpret 
the data. 
TRANSFORM: The transformation logic is where all the data 
manipulation happens. Here you can FILTER out rows that 
are not of interest, JOIN two sets of data files, GROUP data to 
build aggregations, ORDER results, and much more. 
DUMP and STORE: If you don’t specify the DUMP or 
STORE command, the results of a Pig program are not 
generated. You would typically use the DUMP command, 
which sends the output to the screen, when you are debugging 
your Pig programs. When you go into production, you simply 
change the DUMP call to a STORE call so that any results 
from running your programs are stored in a file for further 
processing or analysis. Note that you can use the DUMP 
command anywhere in your program to dump intermediate 
result sets to the screen, which is very useful for debugging 
purposes. 
 
6. HIVE 
Apache Hive is a data warehouse infrastructure built on top of 
Hadoop for providing data summarization, query, and analysis. 
While initially developed by Facebook, Apache Hive is now 
used and developed by other companies such as Netflix. 
Amazon maintains a software fork of Apache Hive that is 
included in Amazon Elastic MapReduce on Amazon Web 
Services fig.3.2. 
 
Apache Hive supports analysis of large datasets stored in 
Hadoop's HDFS and compatible file systems such as Amazon 
S3 filesystem. It provides an SQL-like language called 
HiveQL with schema on read and transparently converts 
queries to map/reduce, Apache Tez and in the future Spark 
jobs. All three execution engines can run in Hadoop YARN. 
To accelerate queries, it provides indexes, including bitmap 
indexes. By default, Hive stores metadata in an embedded 
Apache Derby database and other client/server databases like 
MySQL can optionally be used. Currently, there are four file 
formats supported in Hive, which are TEXTFILE 
SEQUENCEFILE, ORC and RCFILE. 
Other features of Hive include: 
 
Indexing to provide acceleration, index type including 
compaction and Bitmap index as of 0.10, more index types are 
planned.  Different storage types such as plain text, RCFile, 
HBase, ORC, and others. Metadata storage in an RDBMS, 
significantly reducing the time to perform semantic checks 
during query execution. Operating on compressed data stored 
into Hadoop ecosystem, algorithm including gzip, bzip2, 
snappy, etc. 
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Built-in user defined functions (UDFs) to manipulate dates, 
strings, and other data-mining tools. Hive supports extending 
the UDF set to handle use-cases not supported by built-in 
functions. SQL-like queries (HiveQL), which are implicitly 
converted into MapReduce jobs. 
Internally, a compiler translates HiveQL statements into a 
directed acyclic graph of MapReduce jobs, which are 
submitted to Hadoop for execution. 
Although Pig can be quite a powerful and simple language to 
use, the downside is that it’s something new to learn and 
master. Some folks at Facebook developed a runtime 
Hadoop® support structure that allows anyone who is already 
fluent with SQL (which is commonplace for relational data-
base developers) to leverage the Hadoop platform right out of 
the gate.Their creation, called Hive, allows SQL developers to 
write Hive Query Language (HQL) statements that are similar 
to standard SQL statements; now you should be aware that 
HQL is limited in the commands it understands, but it is still 
pretty useful. HQL statements are broken down by the Hive 
service into MapReduce jobs and executed acros a Hadoop 
cluster. For anyone with a SQL or relational database 
background, this section will look very familiar to you. As 
with any database management system (DBMS), you can run 
your Hive queries in many ways. You can run them from a 
command line interface (known as the Hive shell), from a Java 
Database Connectivity (JDBC) or Open Database Connectivity 
(ODBC) application leveraging the Hive JDBC/ODBC 
drivers, or from what is called a Hive Thrift Client. The Hive 
Thrift Client is much like any database client that gets installed 
on a user’s client machine (or in a middle tier of three-tier 
architecture): it communicates with the Hive services running 
on the server. You can use the Hive Thrift Client within 
applications written in C++, Java, PHP, Python, or Ruby 
(much like you can use these client-side languages with 
embedded SQL to access a database such as DB2 or Informix). 
Hive looks very much like traditional database code with SQL 
access. However, because Hive is based on Hadoop and 
MapReduce operations, there are several key differences. The 
first is that Hadoop is intended for long sequential scans, and 
because Hive is based on Hadoop, you can expect queries to 
have a very high latency (many minutes). This means that 
Hive would not be appropriate for applications that need very 
fast response times, as you would expect with a database such 
as DB2. Finally, Hive is read-based and therefore not 
appropriate for transaction processing that typically involves a 
high percentage of write operations. 
 
7. HBASE 
Apache HBase began as a project by the company Powerset 
out of a need to process massive amounts of data for the 
purposes of natural language search. It is now a top-level 
Apache project fig.3.2.Facebook elected to implement its new 
messaging platform using HBase in November 2010. HBase is 
a column -oriented database management system that runs on 
top of HDFS. It is well suited for sparse data sets, which are 
common in many big data use cases. Unlike relational 
database systems, HBase does not support a structured query 
language like SQL; in fact, HBase isn’t a relational data store 
at all. HBase applications are written in Java much like a 

typical MapReduce application. HBase does support writing 
applications in Avro, REST, and Thrift. 
 
An HBase system comprises a set of tables. Each table 
contains rows and columns, much like a traditional database. 
Each table must have an element defined as a Primary Key, 
and all access attempts to HBase tables must use this Primary 
Key. An HBase column represents an attribute of an object for 
example, if the table is storing diagnostic logs from servers in 
your environment, where each row might be a log record, a 
typical column in such a table would be the timestamp of 
when the log record was written, or perhaps the server name 
where the record originated. In fact, HBase allows for many 
attributes to be grouped together into what are known as 
column families, such that the elements of a column family are 
all stored together. This is different from a row-oriented 
relational database, where all the columns of a given row are 
stored together. With HBase you must predefine the table 
schema and specify the column families. However, it’s very 
flexible in that new columns can be added to families at any 
time, making the schema flexible and therefore able to adapt to 
changing application requirements. 
Just as HDFS has a NameNode and slave nodes, and 
MapReduce has JobTracker and TaskTracker slaves, HBase is 
built on similar concepts. In HBase a master node manages the 
cluster and region servers store portions of the tables and 
perform the work on the data. In the same way HDFS has 
some enterprise concerns due to the availability of the 
NameNode (among other areas that can be “hardened” for true 
enterprise deployments by InfoSphere BigInsights), HBase is 
also sensitive to the loss of its master node. 

 

8. Conclusion 
Hadoop MapReduce is a large scale, open source software 
framework dedicated to scalable, distributed, data-intensive 
computing. The framework breaks up large data into smaller 
parallelizable chunks and handles scheduling 
▫ Maps each piece to an intermediate value  
▫ Reduces intermediate values to a solution  
▫ User-specified partition and combiner options  

▫ Fault tolerant, reliable, and supports thousands of 
nodes and petabytes of data   

▫ If you can rewrite algorithms into Maps and 
Reduces, and your problem can be broken up into 
small pieces solvable in parallel, then Hadoop’s 
MapReduce is the way to go for a distributed 
problem solving approach to large datasets   

▫ Tried and tested in production  
▫ Many implementation options  

We can present the design and evaluation of a data aware 
cache framework that requires minimum change to the 
original MapReduce programming model for provisioning 
incremental processing for Big data applications using the 
MapReduce model. 
 
 

9. Future analysis: 
Usually it is observed that the M a p R e d u c e framework 
generates a large amount of intermediate data. Such abundant 
information is thrown away after the tasks finish, because 



 
 

                ISSN 23499842(Online), Volume 2, issue 1 March 2017  

International Journal of Innovative Trends and Emerging Technologies 

Paper ID # ICITET17011  

MapReduce is unable to utilize them.Therefore, we propose 
Dache, a data-aware cache framework for big-data 
applications then its tasks submit their intermediate results to 
the cache manager. The task queries the cache manager before 
executing the actual computing work. A novel cache 
description scheme and a cache request and reply protocol are 
designed. 
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