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Abstract – To protect the data in storage area networks from 

the risk of differential power analysis attacks, without 

demeaning a high performance, a high throughput Masked 

Advanced Encryption Standard (AES)engine is proposed. It 

uses unrolling technique which uses huge Field Programmable 

Gate Array (FPGA) resources. In this brief, we aim to optimize 

the area for a masked AES with an unrolled structure. We 

reduce the number of multipliers in Masked Mix Columns and 

Inverse mix columns. We also use FPGA block RAM to further 

reduce the resources.  

Index terms – Advanced encryption Standard (AES), 

differential power analysis (DPA), field programmable gate 

array(FPGA). 

I. INTRODUCTION 

The data stored in storage area network are under the risk 

of information leakage in embedded applications. These 

applications need not only the protection at both the 

protocol level and the physical level but also high 

throughput implementations. The information leakage 

includes power consumption, timing and fault detection. 

 In 1999, Kocher et al. first overcome the 

drawbacks of the advanced encryption standard(AES)[1] by 

means of power analysis attacks. Later, the differential 

power analysis(DPA)[2] attack was developed as one of the 

most interesting power analysis attacks. From then on, 

numerous efforts have been devoted to the development of 

efficient countermeasures for the AES implementations on 

DPA attacks. Two representatives are the multiplicative 

masking and the Boolean masking. They both try to remove 

the correlation between the power consumption and the 

secret keys. The multiplicative masking can be obtained 

using the standard CMOS cells at the gate level or non 

standard CMOS CELLS . On the other hand, the Boolean 

masking can be easily realized at the algorithmic level and 

is immune to glitch attacks. The Boolean masking is more 

advantageous because it doesnot need extra specific 

hardware as in [3] and [4]. 

 The Boolean masking is very good when applied 

to AES but if we directly apply it to AES, one masked 

AES‟s S-box over GF(28) with two 8-bit input and output 

masks needs to store 28 X 28  x 256 bytes. Therefore, for a 

whole 128 – bit Masked AES with an unrolled architecture, 

it needs to store around 2952.8 Mbytes. This is too big to 

be fit into any Field programmable gate array(FPGA). To 

have a reduced implementation of FPGA, one way is to 

transform the S-box computation of a masked AES from 

GF(28) to GF(24). 

 In this brief, we develop techniques to optimize 

the area of the Masked AES Mix- column unit by replacing 

the multipliers unit by XTIME() units. By replacing the 

multipliers in the AES Mix-column block we can enhance 

and optimize the utilization of area in the Field 

Programmable Gate Arrays (FPGA). The multipliers in the 

Mix-Column are replaced by the techniques of binary 

multiplication of shifting the bits towards left to multiply it 

by 2. The other thing to go with this is that the result is only 

8-bit wide. The bit shifted out is also a thing to be 

considered to recover the cipher text during decryption. So 

we care about the bit shifted out if the shifted out bit is 1, 

then the result is XORed with a constant modulo operator 

of 1B to adjust the text to be of the required bit level. 

 Similarly, in the Inverse Mix Column, the 

multipliers are present to mix the columns it is multiplied 

with some constant values . These constant values are 

0x02, 0x03, 0x01 in the encryption side and 0x09, 0x0B, 

0x0D and 0x0E in the decryption part. These constant 

multiplication part stores more intermediate values in the 

Look Up Tables of the Field Programmable Gate Array 

(FPGA) which occupies more area and also consumes more 

power. Since the multipliers play a major role in the Mix 

column architecture, we have to find a correct and exact 

replacement for these. So to avoid the storage of 

intermediate values we use the XTIME() multiplication 

concept. As we are very much in need to optimize the area 

of the Field Programmable Gate Arrays, We eradicate the 

multiplier which adds more overhead to the Masked 

Advanced Encryption Standard(AES). 

 The rest of this brief is organized as follows. 

Section II presents the existing works. Section III proposes 

the optimized AES with detailed design methodologies 

about the masked Mix-Columns and Section IV shows the 

experimental results. Section V draws the conclusion. 

II. PREVIOUS WORK 

 Data transformations in a storage area network 

usually need real-time high-throughput processing 

regardless of area overheads. In addition, the security issues 

of “data – at – rest” in a storage area network system 

require an add-in masking to be DPA and glitch attack 

resistant. Most existing works only concern high 

throughputs but not the ability to defend DPA and glitch 

attacks. Gaj and Chodowiec proposed a pipelined structure 

for the AES on Virtex XCV-1000 FPGA and achieved 12 

Gbits/s. Standaert et al. [6] presented the design tradeoff for 

the further optimization of the AES implementation on 

FPGA platforms. Unrolling, Tiling and pipelining 

structures for the AES were discussed in [7]. Mc Loone and 

McCanny‟s method achieved a throughput of 12 Gbits/s 



ISSN 23499842(Online), Volume 1, Special Issue 1(NCEE’15), May 2015  

                International Journal of Innovative Trends and Emerging Technologies 

Paper ID #NCEE002 
 
 

using lookup table (LUT) based Sub Bytes[8]. Another 

approach [9] aimed at the on- the-fly generation of Sub 

Bytes was first proposed by Rijmen, one of the creators of 

the AES. Hodjat and Verbauwhede presented a fully 

pipelined sub Bytes architecture achieving a throughput of 

21.54 Gbits/S [10]. However, all the aforementioned 

methods are vulnerable to DPA and glitch attacks. 

Mangard et al [11] successfully broke the AES by 

using the DPA attack at the algorithmic level. Oswald et al. 

proposed a masked Sub Bytes over GF(24) at the algorithm 

level, but they only focused on software implementation 

[12]. Higher order masking schemes [13],[14] have been 

proposed. They are based on software implementations of 

the Mased AES.The countermeasures used in the work of 

Golic [15] and Canright and Batina [16] can be attacked 

successfully by the glitch attack [17] at the gate level. 

To the best of our knowledge, no previous work 

has been done on the high-throughput masked AES mix 

columns that has the ability to optimize the area and reduce 

the power consumption and the delay produced in the 

circuits. This is due to the required huge hardware area 

when applying masking to AES at the algorithmic level. 

Most existing works are inefficient to implement masked 

AES with an unrolled architecture on FPGAs. 

III. PROPOSED MASKED AES FOR UNROLLED STRUCTURE  

 In the Boolean masking implementation, the 

intermediate value x is concealed by exclusive – OR ing it 

with the random mask m. 

In the round function of the AES, transformation.To mask a 

128-bit AES, it usually needs    6-byte random values, the 

mask for one 32-bit Mix columns transformation. The field 

GF(28)  is an extension of the field GF(24), over which to 

perform a modular reduction needs an irreducible 

polynomial of degree 2           x2 + {1}x + {e}, and another 

irreducible polynomial  of degree 4, x4 + x + 1. In order to 

reduce the hardware resources, we calculate the masked 

AES engine mainly over GF(24). Fig. 1 shows the proposed 

masked AES, which moves the mapping and inverse 

mapping outside the AES‟s round functions. The plaintext 

and the masking values are mapped once from GF(28) to 

GF(24) and all the intermediate values are computed over 

GF(24). Finally the cipher text is mapped from GF(24) to 

GF(28). The adjustment of the masked Mixcolumns are 

discussed here. 

A.Existing Masked Mix columns over GF(24) 

 Masked Mix columns can be scaled to adjust the 

operations over GF(24), and it needs to deduce the scaling 

factor of a modular multiplication with the fixed 

coefficients 0x02 and 0x03. If s is 1 byte of Mixcolumns, it 

holds that S = Map(Sh,Sl) ≈Shx + Sl, where S €GF(28) and 

Sh,Sl € GF(24). Therefore, the Scaling factors 2x+6 and 

2x+7 of S equal to (4Sh+2Sl)x + (fSh+6Sl) and(5Sh + 2 Sl) 

+ (fSh + 7 Sl). Fig 2 shows the scaling computation for the 

Masked Mix column.  

B. Proposed Masked Mix column over GF(24) 

        In this we use the XTIME() multiplication units 

instead of multipliers with does the multiplication by 

shifting the binary bits and EXORing the result in 1B when 

the shifted bit is 1.In general in the encryption,the mix 

column is as follows.In the polynomial representation, 

multiplication in GF(28) corresponds with the 

multiplication of polynomials modulo an irreducible 

polynomial of degree 8. A polynomial is irreducible if its 

only divisors are one and itself, m(x) = x8 + x4 + x3 + x 

+1,or {01}{1b} in hexadecimal notation. 

Fig. 1 Existing Masked AES with an unrolled architecture , (a) masked AES (b) Masked S- Box
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The modular reduction by m(x) ensures that the 

result will be a binary polynomial of degree less than 8, and 

thus can be represented by a byte. Unlike addition, there is 

no simple operation at the byte level that corresponds to 

this multiplication. The multiplication defined above is 

associative, and the element {01} is the multiplicative 

identity. For any non-zero binary polynomial b(x) of degree 

less than 8, the multiplicative inverse of b(x), denoted as b 

1(x), and follows: the extended Euclidean algorithm isused 

to compute polynomials It follows that the set of 256 

possible byte values, with XOR used as addition and the 

multiplication defined as above, has the structure of the 

finite field GF(28). The result is obtained by reducing the 

above result modulo m(x). If b7 = 0, the result is already in 

reduced form. If b7 = 1, the reduction is accomplished by 

subtracting (i.e., XORing) the polynomial m(x). It follows 

that multiplication by x (i.e.,{00000010} or {02}) can be 

implemented at the byte level as a left shift and a 

subsequent conditional bitwise XOR with {1b}. 

 
Fig. 2 Scaling Computation of the Masked Mix column 

This operation on bytes is denoted by X-time(). 

Multiplication by higher powers of x can be implemented 

by repeated application of X-time ().By adding 

intermediate results, multiplication by any constant can be 

implemented. 

The MixColumns transformation operates on the 

State column-by-column, treating each column as a four-

term polynomial. The columns are considered as 

polynomials over GF(28) and multiplied modulo x4 + 1 

with a fixed polynomial a(x), given by a(x)={03}x3 + 

{01}x2 + {01}x + {02} 

 

Similarly, in the decryption end the Inv Mix 

Columns is the inverse of the Mix Column transformation. 

Inv Mix Columns operates on the State column-by-column, 

treating each column as a four term polynomial. The 

columns are considered as polynomials over GF(28) and 

multiplied modulo x4 + 1 with a fixed polynomial a-1(x), 

given by a-1(x) = {0b}x3 + {0d}x2 + {09}x + {0e}. 

 
Fig 3 shows the scaling computation for the 

proposed Mix column architecture where the number of 

multipliers are reduced and then the adders are increased to 

reduce and optimize the area in Field Programmable Gate 

Arrays. The proposed mix column architecture is reduced 

using X-time circuit. In the proposed method, A novel mix-

column is introduced to reduce the area and power than the 

existing method. The proposed mix-column consists of 

only 12 adders and 4 X-time Circuit. Instead of normal 

multiplier in the mix-column, we are using X-time unit to 

reduce the circuit complexity.  

 

Fig 3.  Proposed Mix-Column architecture 

C. Optimization for Proposed Architecture 

 Usually, throughputs can be significantly 

improved by inserting pipeline registers for latency careless 

designs. For each masked AES‟s round, we insert a six-

stage pipeline to enhance the throughputs. We insert three 

pipelines to each round of the masked AES, called outer 

three pipelines as shown in Fig. 1(a). The pipeline registers 

are inserted at the output of each transformation. We insert 

three pipelines to the masked S-box, called inner three 

pipelines as shown in Fig. 1 (b). In order to be compatible 

with the encryption procedure, we also insert six-stage 

pipelines to the key expansion in order not to affect the 

critical path of the main encryption. 

IV. RESULTS 

 In this section, we have implemented the 

proposed design with a very high speed integrated circuit 

hardware description language, synthesized our design 

using Xilinx ISE 13.3, and ported the design to a virtex 

platform.There have been some existing works on the 

unprotected AES for high throughput applications. The 

work of Mathew et al. was the fastest and smallest AES 

implementation on 45-nm standard cell CMOS library. The 
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most optimized design was the work of Standaert et al., in 

which they achieved the best throughput among the slices 

on FPGA among the existing designs [6]. To our best 

knowledge, there have been no other works on the high – 

throughput masked AES on FPGA platform. Table I shows 

the experimental results proposed masked mix column on 

virtex platform. 

S.NO. PARAMETERS 
EXISTING 

SYSTEM 

PROPOSED 

SYSTEM 

1 
ENCRYPTION 

LUT‟S 
17,057 15,830 

2 
ENCRYPTION 

SLICES 
9,116 8,676 

3 
ENCRYPTION 

DELAY 
9.679 ns 7.859 ns 

4 
ENCRYPTION 

POWER 
8.878 6.246 

5 
DECRYPTION 

LUT‟S 
20,471 19,438 

6 
DECRYPTION 

SLICES 
10,750 10,471 

7 
DECRYPTION 

DELAY 
11.456ns 7.541ns 

8 
DECRYPTION 

POWER 
7.765 6.542 

 

V.CONCLUSION 

 High throughput is an important factor for large 

data transformation systems in Storage Area networks. In 

order to secure “data – at – rest” and enhance the 

throughput, modern systems shift the encryption procedure 

from a software platform to a hardware platform. Hardware 

based encryption still opens the possibility of DPA and 

glitch attacks. In this brief, an LUT – based Masked Mix 

column has been proposed to construct the DPA- resistant 

design with acceptable area on FPGA.  

 

Fig.  4  Comparitive chart of the slices and LUT‟s in 

FPGA. 

The proposed masked AES only needs to map the plain text 

and masking values from GF(28) to GF(24)once the 

beginning of the operation and map the cipher text back 

from GF(24) to GF(28) once at the end of the operation.  

Fig. 4  shows the comparative results of the existing and 

proposed system‟s LUT‟S and Slices required area on the 

FPGA. Thus by removing the multipliers in the mix column 

and inverse mix-column architectures the overall area is 

reduced by more than 15%.. Also the overall power and the 

delay of the gates is also reduced to an extinct of 20%.Thus 

we achieve the proposed Mix column architecture to obtain 

Masked AES with the ablility to defend against DPA and 

glitch attacks. 
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