
ISSN 23499842(Online), Volume 1, Special Issue 1(NCEE’15), May 2015

 International Journal of Innovative Trends and Emerging Technologies

Paper ID #NCEE002

AREA OPTIMIZATION FOR REDUCING CIRCUIT

COMPLEXITY IN MASKED AES BASED ON FPGA
Prof.S.MURUGESWARI

1
, Mrs.P.SRIDEVI

2
, D.VANAJA

3
1
Professor & HOD,

2
AP/ECE,

3
PG SCHOLAR,

1,2,3
Dept. of ECE

1,2,3
Sri Ramanujar Engineering College, Chennai, India.

Abstract – To protect the data in storage area networks from

the risk of differential power analysis attacks, without

demeaning a high performance, a high throughput Masked

Advanced Encryption Standard (AES)engine is proposed. It

uses unrolling technique which uses huge Field Programmable

Gate Array (FPGA) resources. In this brief, we aim to optimize

the area for a masked AES with an unrolled structure. We

reduce the number of multipliers in Masked Mix Columns and

Inverse mix columns. We also use FPGA block RAM to further

reduce the resources.

Index terms – Advanced encryption Standard (AES),

differential power analysis (DPA), field programmable gate

array(FPGA).

I. INTRODUCTION

The data stored in storage area network are under the risk

of information leakage in embedded applications. These

applications need not only the protection at both the

protocol level and the physical level but also high

throughput implementations. The information leakage

includes power consumption, timing and fault detection.

 In 1999, Kocher et al. first overcome the

drawbacks of the advanced encryption standard(AES)[1] by

means of power analysis attacks. Later, the differential

power analysis(DPA)[2] attack was developed as one of the

most interesting power analysis attacks. From then on,

numerous efforts have been devoted to the development of

efficient countermeasures for the AES implementations on

DPA attacks. Two representatives are the multiplicative

masking and the Boolean masking. They both try to remove

the correlation between the power consumption and the

secret keys. The multiplicative masking can be obtained

using the standard CMOS cells at the gate level or non

standard CMOS CELLS . On the other hand, the Boolean

masking can be easily realized at the algorithmic level and

is immune to glitch attacks. The Boolean masking is more

advantageous because it doesnot need extra specific

hardware as in [3] and [4].

 The Boolean masking is very good when applied

to AES but if we directly apply it to AES, one masked

AES‟s S-box over GF(28) with two 8-bit input and output

masks needs to store 28 X 28 x 256 bytes. Therefore, for a

whole 128 – bit Masked AES with an unrolled architecture,

it needs to store around 2952.8 Mbytes. This is too big to

be fit into any Field programmable gate array(FPGA). To

have a reduced implementation of FPGA, one way is to

transform the S-box computation of a masked AES from

GF(28) to GF(24).

 In this brief, we develop techniques to optimize

the area of the Masked AES Mix- column unit by replacing

the multipliers unit by XTIME() units. By replacing the

multipliers in the AES Mix-column block we can enhance

and optimize the utilization of area in the Field

Programmable Gate Arrays (FPGA). The multipliers in the

Mix-Column are replaced by the techniques of binary

multiplication of shifting the bits towards left to multiply it

by 2. The other thing to go with this is that the result is only

8-bit wide. The bit shifted out is also a thing to be

considered to recover the cipher text during decryption. So

we care about the bit shifted out if the shifted out bit is 1,

then the result is XORed with a constant modulo operator

of 1B to adjust the text to be of the required bit level.

 Similarly, in the Inverse Mix Column, the

multipliers are present to mix the columns it is multiplied

with some constant values . These constant values are

0x02, 0x03, 0x01 in the encryption side and 0x09, 0x0B,

0x0D and 0x0E in the decryption part. These constant

multiplication part stores more intermediate values in the

Look Up Tables of the Field Programmable Gate Array

(FPGA) which occupies more area and also consumes more

power. Since the multipliers play a major role in the Mix

column architecture, we have to find a correct and exact

replacement for these. So to avoid the storage of

intermediate values we use the XTIME() multiplication

concept. As we are very much in need to optimize the area

of the Field Programmable Gate Arrays, We eradicate the

multiplier which adds more overhead to the Masked

Advanced Encryption Standard(AES).

 The rest of this brief is organized as follows.

Section II presents the existing works. Section III proposes

the optimized AES with detailed design methodologies

about the masked Mix-Columns and Section IV shows the

experimental results. Section V draws the conclusion.

II. PREVIOUS WORK

 Data transformations in a storage area network

usually need real-time high-throughput processing

regardless of area overheads. In addition, the security issues

of “data – at – rest” in a storage area network system

require an add-in masking to be DPA and glitch attack

resistant. Most existing works only concern high

throughputs but not the ability to defend DPA and glitch

attacks. Gaj and Chodowiec proposed a pipelined structure

for the AES on Virtex XCV-1000 FPGA and achieved 12

Gbits/s. Standaert et al. [6] presented the design tradeoff for

the further optimization of the AES implementation on

FPGA platforms. Unrolling, Tiling and pipelining

structures for the AES were discussed in [7]. Mc Loone and

McCanny‟s method achieved a throughput of 12 Gbits/s

ISSN 23499842(Online), Volume 1, Special Issue 1(NCEE’15), May 2015

 International Journal of Innovative Trends and Emerging Technologies

Paper ID #NCEE002

using lookup table (LUT) based Sub Bytes[8]. Another

approach [9] aimed at the on- the-fly generation of Sub

Bytes was first proposed by Rijmen, one of the creators of

the AES. Hodjat and Verbauwhede presented a fully

pipelined sub Bytes architecture achieving a throughput of

21.54 Gbits/S [10]. However, all the aforementioned

methods are vulnerable to DPA and glitch attacks.

Mangard et al [11] successfully broke the AES by

using the DPA attack at the algorithmic level. Oswald et al.

proposed a masked Sub Bytes over GF(24) at the algorithm

level, but they only focused on software implementation

[12]. Higher order masking schemes [13],[14] have been

proposed. They are based on software implementations of

the Mased AES.The countermeasures used in the work of

Golic [15] and Canright and Batina [16] can be attacked

successfully by the glitch attack [17] at the gate level.

To the best of our knowledge, no previous work

has been done on the high-throughput masked AES mix

columns that has the ability to optimize the area and reduce

the power consumption and the delay produced in the

circuits. This is due to the required huge hardware area

when applying masking to AES at the algorithmic level.

Most existing works are inefficient to implement masked

AES with an unrolled architecture on FPGAs.

III. PROPOSED MASKED AES FOR UNROLLED STRUCTURE

 In the Boolean masking implementation, the

intermediate value x is concealed by exclusive – OR ing it

with the random mask m.

In the round function of the AES, transformation.To mask a

128-bit AES, it usually needs 6-byte random values, the

mask for one 32-bit Mix columns transformation. The field

GF(28) is an extension of the field GF(24), over which to

perform a modular reduction needs an irreducible

polynomial of degree 2 x2 + {1}x + {e}, and another

irreducible polynomial of degree 4, x4 + x + 1. In order to

reduce the hardware resources, we calculate the masked

AES engine mainly over GF(24). Fig. 1 shows the proposed

masked AES, which moves the mapping and inverse

mapping outside the AES‟s round functions. The plaintext

and the masking values are mapped once from GF(28) to

GF(24) and all the intermediate values are computed over

GF(24). Finally the cipher text is mapped from GF(24) to

GF(28). The adjustment of the masked Mixcolumns are

discussed here.

A.Existing Masked Mix columns over GF(24)

 Masked Mix columns can be scaled to adjust the

operations over GF(24), and it needs to deduce the scaling

factor of a modular multiplication with the fixed

coefficients 0x02 and 0x03. If s is 1 byte of Mixcolumns, it

holds that S = Map(Sh,Sl) ≈Shx + Sl, where S €GF(28) and

Sh,Sl € GF(24). Therefore, the Scaling factors 2x+6 and

2x+7 of S equal to (4Sh+2Sl)x + (fSh+6Sl) and(5Sh + 2 Sl)

+ (fSh + 7 Sl). Fig 2 shows the scaling computation for the

Masked Mix column.

B. Proposed Masked Mix column over GF(24)

 In this we use the XTIME() multiplication units

instead of multipliers with does the multiplication by

shifting the binary bits and EXORing the result in 1B when

the shifted bit is 1.In general in the encryption,the mix

column is as follows.In the polynomial representation,

multiplication in GF(28) corresponds with the

multiplication of polynomials modulo an irreducible

polynomial of degree 8. A polynomial is irreducible if its

only divisors are one and itself, m(x) = x8 + x4 + x3 + x

+1,or {01}{1b} in hexadecimal notation.

Fig. 1 Existing Masked AES with an unrolled architecture , (a) masked AES (b) Masked S- Box

ISSN 23499842(Online), Volume 1, Special Issue 1(NCEE’15), May 2015

 International Journal of Innovative Trends and Emerging Technologies

Paper ID #NCEE002

The modular reduction by m(x) ensures that the

result will be a binary polynomial of degree less than 8, and

thus can be represented by a byte. Unlike addition, there is

no simple operation at the byte level that corresponds to

this multiplication. The multiplication defined above is

associative, and the element {01} is the multiplicative

identity. For any non-zero binary polynomial b(x) of degree

less than 8, the multiplicative inverse of b(x), denoted as b

1(x), and follows: the extended Euclidean algorithm isused

to compute polynomials It follows that the set of 256

possible byte values, with XOR used as addition and the

multiplication defined as above, has the structure of the

finite field GF(28). The result is obtained by reducing the

above result modulo m(x). If b7 = 0, the result is already in

reduced form. If b7 = 1, the reduction is accomplished by

subtracting (i.e., XORing) the polynomial m(x). It follows

that multiplication by x (i.e.,{00000010} or {02}) can be

implemented at the byte level as a left shift and a

subsequent conditional bitwise XOR with {1b}.

Fig. 2 Scaling Computation of the Masked Mix column

This operation on bytes is denoted by X-time().

Multiplication by higher powers of x can be implemented

by repeated application of X-time ().By adding

intermediate results, multiplication by any constant can be

implemented.

The MixColumns transformation operates on the

State column-by-column, treating each column as a four-

term polynomial. The columns are considered as

polynomials over GF(28) and multiplied modulo x4 + 1

with a fixed polynomial a(x), given by a(x)={03}x3 +

{01}x2 + {01}x + {02}

Similarly, in the decryption end the Inv Mix

Columns is the inverse of the Mix Column transformation.

Inv Mix Columns operates on the State column-by-column,

treating each column as a four term polynomial. The

columns are considered as polynomials over GF(28) and

multiplied modulo x4 + 1 with a fixed polynomial a-1(x),

given by a-1(x) = {0b}x3 + {0d}x2 + {09}x + {0e}.

Fig 3 shows the scaling computation for the

proposed Mix column architecture where the number of

multipliers are reduced and then the adders are increased to

reduce and optimize the area in Field Programmable Gate

Arrays. The proposed mix column architecture is reduced

using X-time circuit. In the proposed method, A novel mix-

column is introduced to reduce the area and power than the

existing method. The proposed mix-column consists of

only 12 adders and 4 X-time Circuit. Instead of normal

multiplier in the mix-column, we are using X-time unit to

reduce the circuit complexity.

Fig 3. Proposed Mix-Column architecture

C. Optimization for Proposed Architecture

 Usually, throughputs can be significantly

improved by inserting pipeline registers for latency careless

designs. For each masked AES‟s round, we insert a six-

stage pipeline to enhance the throughputs. We insert three

pipelines to each round of the masked AES, called outer

three pipelines as shown in Fig. 1(a). The pipeline registers

are inserted at the output of each transformation. We insert

three pipelines to the masked S-box, called inner three

pipelines as shown in Fig. 1 (b). In order to be compatible

with the encryption procedure, we also insert six-stage

pipelines to the key expansion in order not to affect the

critical path of the main encryption.

IV. RESULTS

 In this section, we have implemented the

proposed design with a very high speed integrated circuit

hardware description language, synthesized our design

using Xilinx ISE 13.3, and ported the design to a virtex

platform.There have been some existing works on the

unprotected AES for high throughput applications. The

work of Mathew et al. was the fastest and smallest AES

implementation on 45-nm standard cell CMOS library. The

ISSN 23499842(Online), Volume 1, Special Issue 1(NCEE’15), May 2015

 International Journal of Innovative Trends and Emerging Technologies

Paper ID #NCEE002

most optimized design was the work of Standaert et al., in

which they achieved the best throughput among the slices

on FPGA among the existing designs [6]. To our best

knowledge, there have been no other works on the high –

throughput masked AES on FPGA platform. Table I shows

the experimental results proposed masked mix column on

virtex platform.

S.NO. PARAMETERS
EXISTING

SYSTEM

PROPOSED

SYSTEM

1
ENCRYPTION

LUT‟S
17,057 15,830

2
ENCRYPTION

SLICES
9,116 8,676

3
ENCRYPTION

DELAY
9.679 ns 7.859 ns

4
ENCRYPTION

POWER
8.878 6.246

5
DECRYPTION

LUT‟S
20,471 19,438

6
DECRYPTION

SLICES
10,750 10,471

7
DECRYPTION

DELAY
11.456ns 7.541ns

8
DECRYPTION

POWER
7.765 6.542

V.CONCLUSION

 High throughput is an important factor for large

data transformation systems in Storage Area networks. In

order to secure “data – at – rest” and enhance the

throughput, modern systems shift the encryption procedure

from a software platform to a hardware platform. Hardware

based encryption still opens the possibility of DPA and

glitch attacks. In this brief, an LUT – based Masked Mix

column has been proposed to construct the DPA- resistant

design with acceptable area on FPGA.

Fig. 4 Comparitive chart of the slices and LUT‟s in

FPGA.

The proposed masked AES only needs to map the plain text

and masking values from GF(28) to GF(24)once the

beginning of the operation and map the cipher text back

from GF(24) to GF(28) once at the end of the operation.

Fig. 4 shows the comparative results of the existing and

proposed system‟s LUT‟S and Slices required area on the

FPGA. Thus by removing the multipliers in the mix column

and inverse mix-column architectures the overall area is

reduced by more than 15%.. Also the overall power and the

delay of the gates is also reduced to an extinct of 20%.Thus

we achieve the proposed Mix column architecture to obtain

Masked AES with the ablility to defend against DPA and

glitch attacks.

REFERENCES

[1] Advanced Encryption Standard(AES), FIPS – 197, Nat. Inst. of

Standards and Technol., 2001.

[2] P.Kocher, J.Jaffe, and B.Jun, “ Differential Power analysis,” in Proc.

CRYPTO, 1999, vol.LNCS 1666, pp.388-397.

[3]L.Goubin and J.Patarin,”DES and differential power analysis(the

„duplication‟ method),” in Proc.CHES LNCS, 1999, vol.1717, pp. 158-172.

[4] S.Messerges,”Securing the AES finalists against power analysis attacks,”

in Porc.FSE LNCS, 2001, vol.1978, pp. 150-164

[5] K.Gaj and P.Chodowiec, “Fast implementation and fair comparison of

the final candidates for advanced encryption standard using field

programmable gate arrays”, in Proc. CT-RSA LNCS, 2001, vol. 2020, pp.

84-99.

[6] F.X.Standaert, G.Rouvroy, J.J.Quisquater, and J.D.Legat, “Efficient

implementation of Rijndael encryption in reconfigurable hardware:

Improvements and design tradeoffs,”(in German), in Proc. CHES LNCS,

2003, vol2779, pp.334-350.

[7] G.P.Saggese, A.Mazzocca and A.G.M.Strollo, “An FPGA based

performance analysis of the unrolling, tiling, pipelining of the AES

algorithm,” in Proc. FPL LNCS, Aveiro, Portugal, 2003, vol 2778, pp. 292-

302.

[8] M.McLoone and J.V.Mc Canny, “Rijndael FPGA implementations using

look-up tables,” in Proc. IEEE Workshop signal Process. Syst., Antwerp,

Belgium, 2001, pp.349-360

[9] A.Hodjat and I.Verbauwhede, “ A 21.54 Gbits/s fully pipelined

processor on FPGA,” in Proc. IEEE 12th Annu. symp. Field Programm.

Custom comput. Mach., 2004, pp. 308-309.

[10] S.Mangard, N.Pramstaller and E.Oswald,”Successfully attacking

masked AES hardware implementations,” in Proc. CHES LNCS, 2005,

vol.3659, pp. 157-171.

[11] E.Oswald, S.Mangard, V.Rijmen, “ A side-channel analysis resistant

description of the AES S-box,” in Proc. FSE LNCS, Setubal, Portugal, 2005,

vol.3557, pp. 413 – 423.

[12] S.Mangard, E.Oswald, and T.Popp, Power Analysis Attacks: Revealing

the secrets of Smart cards. New York: Spinger-Verlag, 2007.

