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Abstract—In this paper we propose a hybrid 

technique for denoising in HSI. The HSI data cube is able to 

equally treat both spatial and spectral modes since they are 

measured as three order tensor. Subsequently, the rank-1 

tensor decomposition (R1TD) algorithm is applied to the 

tensor data, which takes into account both the spatial and 

spectral information of the hyperspectral data cube. To 

identify and distinguish spectrally unique materials, the 

HSI are spectrally determined, to provide sufficient spectral 

information. A noise-reduced hyperspectral image is then 

obtained by combining the rank-1 tensors using an Eigen 

value intensity sorting and reconstruction technique in case 

of single noise and K-SVD (Singular Value Decomposition) 

algorithm in case of Multiple Noise. By incorporating sparse 

regularization of small image patches, the proposed method 

can efficiently remove a variety of mixed or single noise 

while preserving the image textures well. The learned 

dictionary used clearly helps in removing the noise. This 

minimizing model removes the following mixed noise such 

as Gaussian-Gaussian mixture, Impulse noise and 

Gaussian-impulse noise from the HSI data. The weighted 

rank-one approximation problem arisen from the proposed 

model is solved by a new iterative scheme and the low rank 

approximation can be obtained by Singular Value 

Decomposition (SVD). The weighting function in the model 

can be determined by the algorithm itself, and it plays a role 

of noise detection in terms of the different estimated noise 

parameters. The proposed method proves the best results 

compared to the existing methods. 

 
Keywords— HSI (Hyperspectral Image), R1TD, K-SVD 

algorithm, learned dictionary, Gaussian noise, Impulse 

noise, Mixed noise. 

I. INTRODUCTION 

The noise in hyperspectral imagery (HSI) can 

generally be categorized into two classes: random noise 

and fixed-pattern noise. Fixed-pattern noise like striping, 

generated during the calibration process, can be mitigated 

by a suitable model [3]. In contrast, random noise cannot 

be removed entirely, due to its stochastic nature. One 

widely used random noise model in HSI is the additive 

model, which is assumed to be white, Gaussian, and 

independent-from-signal. However, with the 

improvement in the sensitivity of hyperspectral sensors, 

in some cases, the dominant noise source is no longer 

determined by signal-independent additive noise, but a 

mixture of signal-independent noise, signal-dependent 

noise, and fixed-pattern noise [1]. Acito [2] investigated 

the random noise estimation problem for HSI. Their 

newly developed model takes into account the signal-

dependent noise contribution and is suitable for noise 

characterization in data where the signal-independent 

noise is not dominant. Bioucas-Dias and Figueiredo [5] 

described a new approach to solve the optimization 

problem resulting from a variational estimation of images 

observed under multiplicative noise models. Total 

variation (TV) regularization was used as the prior and an 

augmented Lagrangian method was applied to the 

constrained problem. Since the additive noise model is 

the situation generally found in HSI, many algorithms 

have been derived that are based on this model. The 

traditional methods employ denoising algorithms such as 

singular value decomposition (SVD) and Wiener and 

wavelet filters some algorithms have been proposed to 

combine the spatial and spectral information for HSI 

noise reduction. Othman and Qian [15] proposed a hybrid 

spatial– spectral derivative-domain wavelet shrinkage 

noise reduction (HSSNR) approach. Chen and Qian 

proposed to simultaneously reduce the dimensionality 

and noise of HSI by the use of bivariate wavelet 

shrinkage. Yuan [18] also presented a spectral-spatial 

adaptive total variation model for hyperspectral image 

denoising. Another type of HSI noise reduction algorithm 

for removing striping artifacts is based on wavelet 

transform and adaptive frequency domain filtering [17]. 

The multidimensional Wiener filtering (MWF) algorithm 

[15] is one of these Tucker-based noise reduction 

algorithms which jointly takes into account the spatial–

spectral information and achieves a simultaneous 

improvement in image quality and classification 

accuracy. The MWF algorithm is expected to generate 

noiseless images; however, some blurring is introduced 

after the denoising process. SSAHTV effectively 

removes the random noise and gives a clear view of the 

input image. However, some tiny details are over-

smoothed. 

Disadvantages of Existing System: Existing algorithms 

may lead to a loss of the inter-dimensional information 

since the correlation between the spatial and spectral 

bands is not simultaneously considered. The application 

of a core tensor and n-mode tensor product may lead to 

information compression and loss of spatial detail.  

 

The input HSI data cube is considered as a 

three-order tensor. Subsequently, the rank-1 tensor 

decomposition (R1TD) algorithm is used to extract the 

signal-dominant component from the observed HSI data 

cube by sorting the Eigen-values generated by tensor 

decomposition. Here to distinguish the signal and noise 

profiles, that defines the contribution of the rank-1 

profiles to the reconstructed signal-dominant 

components. We therefore propose to extract the signal-

dominant component from the observed data cube by 

sorting the weights of the rank-1 tensors, rather than 

finding the tensor rank of the noisy data. After the noise 

component of the input data cube is removed, the signal-

dominant component is obtained by reconstructing the 

remaining rank-1 tensors. Based on this idea, a series of 

the rank-1 tensors by R1TD should be estimated so that 
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the restored tensor b is as close as possible to the noise-

free S tensor (or signal-dominant component) S, i.e., we 

minimize the mean squared error (MSE) between the 

ideal signal tensor and the reconstructed signal tensor.  

The HSI are spectrally over determined, which 

means it provides ample spectral information to identify 

and distinguish spectrally unique materials. This entire 

denoising process is based on the K-SVD denoising 

algorithm. By incorporating sparse regularization of 

small image patches, the proposed method can efficiently 

remove a variety of mixed or single noise while 

preserving the image textures well. The learned 

dictionary used clearly helps in removing the noise. Our 

work involved in minimizing model to remove mixed 

noise such as Gaussian-Gaussian mixture, impulse noise 

and Gaussian-impulse noise from the HSI data. To solve 

the weighted rank-one approximation problem arisen 

from the proposed model, a new iterative scheme is given 

and the low rank approximation can be obtained by 

singular value decomposition(SVD) and we present a 

new weighting data fidelity function, which has the same 

minimize as the original likelihood functional but is 

much easier to optimize. The weighting function in the 

model can be determined by the algorithm itself, and it 

plays a role of noise detection in terms of the different 

estimated noise parameters. 

Advantages of Proposed System:R1TD algorithm is that 

it treats the HSI data as a cube and, hence, is able to 

simultaneously extract tensor features in both the spectral 

and spatial modes. Unlike the state-of-the-art Tucker 

model based denoising methods; the proposed R1TD 

algorithm considers the fact that the different parts of 

HSI can be represented by a sequence of rank-1 tensors.  

K-SVD algorithm removes method can efficiently 

remove a variety of mixed or single noise while 

preserving the image textures well. 

II. HSI AND TENSORS 

A. Analysis on Hyperspectral Images 

To understand the advantages of hyperspectral 

imagery, it may help to first review some basic spectral 

remote sensing concepts. You may recall that each 

photon of light has a wavelength determined by its 

energy level. Light and other forms of electromagnetic 

radiation are commonly described in terms of their 

wavelengths. For example, visible light has wavelengths 

between 0.4 and 0.7 microns, while radio waves have 

wavelengths greater than about 30 cm (Fig. 

1).Reflectance is the percentage of the light hitting a 

material that is then reflected by that material (as 

opposed to being absorbed or transmitted).  Some 

materials will reflect certain wavelengths of light, while 

other materials will absorb the same wavelengths. These 

patterns of reflectance and absorption across wavelengths 

can uniquely identify certain materials. 

 

B. Types of Imaging Techniques 

Depending on the number of spectral bands and 

wavelengths measured, an image is classified as a 

multispectral image when several wavelengths are 

measured and a hyperspectral image when a complete 

wavelength region, i.e., the whole spectrum, is measured 

 

 
Fig 1 Electromagnetic Spectrum 

for each spatial point. For example, a RGB image from a 

typical digital camera is a type of multispectral image 

that uses the light intensity at three specific wavelengths: 

red, green, and blue, to create an image in the visible 

region. The Fig 2 compares the optical information 

obtained by monochrome cameras, RGB cameras, and 

hyperspectral cameras. 

 

 
 

                            Fig 2 Differences in imaging 

 

C. Imaging spectrometer 

Hyperspectral images are produced by 

instruments called imaging spectrometers. The 

development of these complex sensors has involved the 

convergence of two related but distinct technologies: 

spectroscopy and the remote imaging of Earth and 

planetary surfaces. 

 
Fig 3 Imaging Spectrometer 

 

Spectroscopy is the study of light that is emitted 

by or reflected from materials and its variation in energy 

with wavelength. As applied to the field of optical remote 

sensing, spectroscopy deals with the spectrum of sunlight 

that is diffusely reflected (scattered) by materials at the 

Earth‟s surface. Instruments called spectrometers (or 

spectro radiometers) are used to make ground-based or 

laboratory measurements of the light reflected from a test 

material. An optical dispersing element such as a grating 

or prism in the spectrometer splits this light into many 

narrow, adjacent wavelength bands and the energy in 

each band is measured by a separate detector. By using 

hundreds or even thousands of detectors, spectrometers 
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can make spectral measurements of bands as narrow as 

0.01 micrometers over a wide wavelength range, 

typically at least 0.4 to 2.4 micrometers (visible through 

middle infrared wavelength ranges). Remote imagers are 

designed to focus and measure the light reflected from 

many adjacent areas on the Earth‟s surface. In many 

digital images, sequential measurements of small areas 

are made in a consistent geometric pattern as the sensor 

platform moves and subsequent processing is required to 

assemble them into an image.  

D. Tensor 

A tensor, represented as  is defined as 

a multidimensional array which is the higher-order 

equivalent of the vector (one-order tensor) and a matrix 

(two-order tensor). In this study, the HSI data cube is 

regarded as a three-order tensor  in which 

modes1 and 2 represent the spatial modes and mode 3 

denotes the spectral mode. Taking each vector to be in 

different mode, we can visualize the outer product of 

three vectors as follows, 

 

Mathematically, we can write the outer product of three 

vectors a; b; c as follows,  

 
We can see that the indexes of the entries in the resulting 

tensor. 

Tensor matricization reorders the elements of an 

N-order tensor into a matrix from a given mode. The n-

mode matricization of X belongs to R
L1×L2×…×LN 

is matnX 

belongs to R
Li×(L1L2...Ln-1 Ln+1...LN) 

, which is the ensemble 

of vectors in the n-mode obtained by keeping index Li 

fixed and varying the other indices. A visual illustration 

of tensor matricization is shown in Fig 5. 

III. STEPS TO REDUCE THE MIXED NOISE IN HSI 

The HIS data is taken as input to the system. This HSI 

image is read and displayed. Then the HSI image 

processed in the R1TD algorithm to provide the Rank-1 

Tensor profiles. With these profiles, we perform the 

Alternative Least Square Algorithm to optimize the 

tensors. Then we sort the tensors of higher order and 

reconstruct the noise free image by combining signal 

dominant components. 

A. HSI Image Reader 

 The Hyperspectral imaging (HSI) collects and process 

information from across the electromagnetic spectrum. 

Much as the human eye sees visible light in three bands 

(red, blue, green), spectral imaging divides the spectrum 

into many more bands. This technique of dividing images 

into bands can be extended before can be extended 

beyond the visibility. Hyperspectral sensors collect 

information as a set of ‟images‟. Each image represents a 

range of the electromagnetic spectrum and is also known 

as a spectral band. These „images‟ are then combined and 

form a three dimensional hyperspectral data cube for 

processing and analysis. This module is designed to read 

and visualize the HSI images. 

The HSI data is considered as multiple images 

combined as a cube. Thus we have view each image in a 

well furnished manner. Each image ahs slice of images of 

different colors. This slice of image is not taken as a 

single color image for the calculation instead it is taken 

as whole cube called tensors. 

 Here, we denote O as the observed HSI data cube 

consisting of the signal-dominant component S and the 

additive noise component N. By extending the classic 

two-dimensional additive noise model, the tensorial 

formulation is,  

O=S+N                                                                          (1) 

In this model, the noise is assumed to be white, Gaussian 

and independent from signal. 

 

 
Fig 4 Architecture for Mixed Noise Reduction in HSI 

B. Rank 1- Tensor Decomposition 

The R1TD algorithm splits the signal into two 

components Signal Dominant Component and Noise 

Component. Finally the Signal Dominant Component 

alone is taken and the Reconstruction of image occurs to 

produce the Denoised HSI data. We develop a new tensor 

decomposition which jointly treats both the spatial and 

spectral modes. The R1TD algorithm is applied to the 

tensor data input which takes into account both the 

spatial and spectral information of the hyperspectral data 

cube. The tensor decomposition is of the form 

CANDECOMP/PARAFAC decomposition (Canonical 

decomposition and parallel factor decomposition). 

 
 

Fig 5 Tensor as the outer product of three vectors 

 

 

The tensor decomposition was first attempted by 

Hitchcock in 1927 and Eckart and Young in 1936. 

However it was not fully introduced until 1970 with the 
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work of Harshman about the PARAFAC decomposition 

of Carroll and Chang about CANDECOMP. Both paper 

appeared in Psychometrika and explained the same 

decomposition. The CANDECMOP/PARAFAC is based 

on the fact that tensors can be rewritten as the sum of the 

several other tensors. Since the outer product of the three 

vectors gives a tensor as a result. We shall denote this 

tensor to be of rank 1 and we will use the term “rank 1 

tensor” to denote tensors that can be written as the outer 

product of the vector triple. The 

CANDECOMP/PARAFAC decomposition rewrites a 

given tensor as a sum of several rank 1 tensors. 

Following the argument above, we define a tensor to be 

rank 2 if it can be expressed as the sum of two rank 1 

tensors. Similarly, we define a tensor to be of rank 3 if it 

can be expressed as the sum of three rank 1 tensors. Thus 

the definition of a rank of a tensor T is the minimal 

number of rank 1 tensors that yield T as a linear 

combination. 

 Based on the definitions of the rank 1 tensor and 

vector outer product, tensor can be 

represented with the rank-1 tensor decomposition model: 

                                        
(2) 
where  are vectors 

(rank-1 tensor in this model) on three modes, and M is 

the number of rank-1 tensors used to restore the whole 

tensor O. Considering  as the weight value, the above 

implies that the HSI data is a linear combination of a 

sequence of rank-1 tensors. However, there is currently 

no straight forward solution to M or the so-called tensor 

rank. The rationale of this problem is explained as 

follows: The rank of a three order tensor is equivalent to 

the minimal number of triads necessary to describe the 

tensor.  

C. Dictionary Learning for K-SVD 

The four sub-minimization problems are solved as 

follows: 

 

1) Sparse Coding and Dictionary Learning: The first 

minimization problem is 

             (3) 

Applying the alternating algorithm again to this sub 

problem, this problem can be split into two convex sub 

problems corresponding to the so-called sparse coding 

step and the dictionary learning step, respectively. Let 

ν1 be an inner iteration number, then  and can 

be obtained by solving the following two minimization 

problems iteratively: 

 

Sparse Coding (Conjugated OMP) 

     

                

 

                          (4) 

In the above,  is a diagonal matrix whose diagonal 

elements are .  

Dictionary Learning: (Modified K-SVD) 

The linear structure of K-SVD is significantly changed 

by the non-uniform weights. We denote 

                          (5) 

Then  

   (6) 

Similar to the K-SVD learning algorithm of [13], a 

natural approach to minimize each atom  from 

following energy: 

        (7) 

In the above, . This 

problem is known as weighted approximation. An 

iterative algorithm [22] to address this difficulty is as 

follows  

                                                     (8) 

via SVD. This algorithm cannot be used for the 

unweighted case. Thus we solve the minimization 

problem was: 

                                            (9) 

to update the atoms, where . 

Thus the modified scheme reduces the original K-SVD 

algorithm when all weights are the same. 

Incorporating the sparse constraint, we get our 

modified K-SVD algorithm for weighted norm as 

follows: 

1) Select the index set of patches Sk  that use atom dk  

                    (10) 

2) Let , for each image 

patch with index i  Sk calculate the residual 

 

                                                                     (11)                                              

3) Set  with its columns being the 

 and update  by minimizing  

 
                                                                      (12) 

where . This rank-one approximation 

can be solved using SVD decomposition of  

4) Replace  by relevant elements of β
*.
 

In our experiment, we choose the inner iteration number 

. 

2) Reconstruction: The minimization problem we have 

to solve is as follows, since  is quadratic with respect to 

f, thus 

 

                                                                   (13) 

Where  represents  and Ri is a 

diagonal matrix. Thus the inverse matrix can be directly 

obtained. 
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3) Noise Clustering (Exception Step): The minimization 

problem we need to solve is uυ
+1 

and it can be computed 

by 

 

                                                 (14) 

 

4) Parameter Estimation: The minimization for this step 

is  

                                                                      
 

                                                                                (15)   

From equation , we get the closed-form solution of 

: 

                                                                                     (16) 

D. Signal Dominant Component 

Before going into the optimization we have to 

know about the operation performed with the tensors. 

 

The Kronecker product: The Kronecker product of 

matrices  is denoted by : 

                (17) 

 

The Khatri–Rao product: It can be regarded as the 

column-wise Kronecker product. The Khatri–Rao 

product of matrices A=[a1,a2,…., ak] Ԑ R
I×K

  and 

B=[b1,b2,…., bk] Ԑ R
J×K

 is determined by : 

        (18) 

Figure shows how the Khatri–Rao product works. 

 
Fig 6  Visual illustration of the Khatri-Rao product 

 

A common assumption for additive noise in 

subspace analysis is that the useful signals in HSI are 

highly correlated between the spectral channels, and the 

noise is accordingly less correlated because of its random 

distribution. R1TD weights can be used to indicate the 

correlation between each rank-1 profiles and the signals, 

hence, are used here to distinguish the signal and noise 

profiles,  

                                              (19) 

 

Where „k‟ is the decomposition level in this study, and it 

refers to the number of rank-1 tensors corresponding to 

the signal-dominant component, and is smaller than the 

value of M. Although the tensor rank M is difficult to 

calculate, it is unimportant in the R1TD model, in which 

the signal-dominant component is reconstructed from the 

k rank-1 profiles. Consequently, as long as an appropriate 

estimation of the decomposition rank k is performed, the 

denoising will be completed.  

A series of the rank-1 tensors by R1TD should 

be estimated so that the restored tensor b is as close as 

possible to the noise-free S tensor (or signal-dominant 

component) S, i.e., we minimize the mean squared error 

(MSE) between the ideal signal tensor and the 

reconstructed signal tensor: which define the contribution 

of the rank-1 profiles to the reconstructed signal-

dominant component. We therefore propose to extract the 

signal-dominant component from the observed data cube 

by sorting the weights of the rank-1 tensors, rather than 

finding the tensor rank of the noisy data. 

The Optimization of each tensor is performed by 

the Alternative Least Square (ALS) Algorithm. 

A series of the rank-1 tensors by R1TD should be 

estimated so that the restored tensor Ŝ 

 is as close as possible to the noise-free tensor (or signal-

dominant component) S, i.e., we minimize the mean 

squared error (MSE) between the ideal signal tensor and 

the reconstructed signal tensor: 

                   (20) 

 

In this study, we combine the vectors of each rank-1 

tensor in each mode into a factor matrix, i.e., U = [u1, u2, 

. . . , uk], V = [v1, v2, . . . , vk], and W = [w1, w2, . . . , 

wk]. In addition, we also denote Λ as a matrix form, i.e., 

Λ = diag (k1; k2; . . . ; kk). According to tensor 

matricization, the mode-1 flattening of Eq 5.3.3 should 

be expressed as: 

                        (21) 

In the alternating optimization, the solution of Eq 19 is 

optimized in each mode. Each time, only   one factor 

matrix is optimized by the other fixed factor matrices. 

Here, we give the derivation to optimize U by fixing V 

and W in mode 1 as: 

                  (22) 

where U* is the weighted factor matrix computed by U* 

= U . Λ or U*(1)=U(i).Λ(i,i), and i = 1, 2, . . . , k since Λ is a 

diagonal matrix. The minimization Eq 22 is a linear least-

squares problem, and its solution is written as follows: 

       (23) 

where U* is the weighted version of the mode-1 factor 

matrix U. In order to achieve a unique solution for the 

factor matrices, it is assumed that the columns of U, V, 

and W are normalized to length one, i.e 

ǁU(i)ǁ=ǁV(i)ǁ=ǁW(i)ǁ=1 for i = 1, 2, . . . , k. Thus, the 

solution for the mode-1 factor matrix [7] should be: 
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      (24) 

The objective function of Eq 22 can therefore be solved 

by iteratively optimizing each factor matrix while 

keeping the other matrices fixed until the convergence 

criteria is met. In this study, since the ideal noise-free 

tensor S may not be identified in practice, the R1TD 

algorithm utilizes the input tensor O as the initialization 

value of S. In the t
th

 round of iteration, S is replaced by 

the estimated signal tensor Ŝ in the (t-1)
th

 round of 

iteration. The Algorithm converges when the error of the 

estimated signal tensor Ŝ between two iterations 

decreases to a small value. Following algorithm 

summarizes the proposed ALS algorithm for HSI noise 

reduction. 

 

ALS Algorithm 

 

Input: Input HSI tensor , decomposition 

level K, maximum number of iteration ITER 

 

Initialization: Set U, V, W to the identity matrix,  

Step 1: For t=1 to ITER{ 

Step 2: Calculate 

 

 

 
Step 3: Reconstruct estimated noise-free tensor by 

Step 4: Check for convergence, if: 

 
 

Output: The denoised tensor , weight 

matrix , and factor matrices U,V,and W 
After optimizing the tensors the Signal dominant tensor 

are chosen. The lowest value say (0.0001) and those 

having values less than this is taken as signal dominant 

components and all the other components are treated as 

noise components. 

 

E. Denoising 

The signal dominant components are combined leaving 

the noise tensors to the noise free image. After the 

noise components are removed, the signal-dominant 

components are obtained by reconstructing the 

remaining noise free tensor. 

 The tensors are reconstructed to form the noise free 

HSI data by the formula 

                                          (25) 

The value of K is the number of signal dominant 

tensors.  

 

 
 
Fig 7 Main flow chart of the R1TD algorithm for HSI noise reduction 

IV. RESULTS 

The proposed algorithm is applied in 3 set of HSI data. 

The HIS cannot be taken as an image itself. The values 

are to plotted as an image for our visualization. Thus a 

set of values of the received image is plotted as an image 

for our visualization. The values are plotted as an image 

for the original data and for the Denoised data. The 

original values are not plotted fully, only certain area 

shown for the visualization for a clear idea of the HSI 

image 

 

To verify the effectiveness of the proposed algorithm, the 

proposed model is compared with several competitive 

methods: Spectral-Spatial Adaptive Total Variation 

(SSAHTV), Multidimensional Wiener Filtering (MWF) 

and Rank-1 Tensor Decomposition (R1TD). The 

algorithm SSAHTV [15] and MWF [13] may lead to loss 

of inter-dimensional information since the correlation 

between the spatial and spectral bands are not 

simultaneously considered. The application of a core 

tensor and n-mode tensor product may lead to 

information compression and loss of spatial details. 

The R1TD [24] provides clear view than that of the other 

two but it deals with only Additive white and Gaussian 

noise. 

 The proposed algorithm deals mixed noise like 

impulse, Gaussian-Gaussian, Gaussian-impulse. Also it 

provides a higher PSNR than that of the existing system. 

The PSNR is an engineering term for ratio 

between the maximum possible power of a signal and the 

power of corrupting noise that affects the fidelity of its 

representation. Because many signals have a very wide 

dynamic range, PSNR is usually expressed in terms of 

logarithmic decibel scale.  

The PSNR for the Existing System is compared 

with the proposed algorithm in the Table I. This 

comparison confirms that proposed method is has higher 

values than that of the existing systems. Also the existing 

system deals only with single noise whereas this deals 

with mixed noise.  

TABLE I 

 

PSNR COMPARISON FOR THE PROPOSED R1TD ALGORITHM AND THE 

EXISTING SYSTEMS 

 

  Existing Method-PSNR Proposed 

Method-

PSNR 

Band 

Number 

MWF SSAHTV R1TD 

1 24.47984 28.39629 30.3891 

2 24.66283 26.44052 30.4351 

3 25.48411 28.43831 30.4328 

4 24.3141 28.2111 30.1965 

5 24.73444 29.01946 29.9972 

6 23.73444 27.5634 29.5229 
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Fig 8 Graph for PSNR Comparison of The Proposed R1TD Algorithm 

and The Existing Systems 
 

TABLE III 

 
PSNR COMPARISON FOR THE PROPOSED R1TD ALGORITHM AND K-

SVD ALGORITHM WITH THE EXISTING SYSTEMS 

 

 

 

 

Existing Method-

PSNR 

Proposed Method-

PSNR 

Band 

Number 

MWF SSAHTV R1TD Improved 

K-SVD 

1 24.48 28.4 30.39 41.8 

2 24.66 26.44 30.43 40.23 

3 25.48 28.43 30.43 37.2 

4 24.31 28.21 30.2 37.1 

5 24.73 29.02 29.99 36.45 

6 23.73 27.56 29.52 36.25 

 

 

 
 
Fig 9 Graph for PSNR Comparison of The Proposed R1TD Algorithm 

and K-SVD Algorithms and The Existing Systems 

V. CONCLUSION 

In this study, the high-order rank-1 tensor 

decomposition (R1TD) model for single noise and the K-

SVD model for mixed noise is investigated to develop a 

new noise removal algorithm for hyperspectral image 

pre-processing. The main advantage of the R1TD 

algorithm and the K-SVD algorithm is that it treats the 

HSI data as a cube and, hence, is able to simultaneously 

extract tensor features in both the spectral and spatial 

modes. Unlike the state-of-the-art Tucker model based 

denoising methods; the proposed R1TD algorithm and 

the K-SVD algorithm considers the fact that the different 

parts of HSI can be represented by a sequence of rank-1 

tensors. Then, in the additive noise and mixed noise 

condition, noise-free HSI can be obtained once the noise 

component is removed. However, the determination of 

the decomposition level in rank-1 tensor decomposition 

is a difficult and challenging problem. In this study, we 

present an n-mode rank based decomposition-level 

estimator, which performs the decomposition-level 

estimation with the signal-to-noise ratio (SNR), 

dimension, and n-mode rank of the input image. The 

experimental results revealed that, for synthetic data, the 

image quality was improved while the spectral 

information was well preserved. The PSNR is 39.578 as 

an average. Due to the utilization of tensor 

representation, images generated with both fixed noise 

intensity and random noise intensity was effectively 

processed in the synthetic scenarios.  
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